Схема зарядного устройства автоматического: Зарядное устройство для автомобильного АКБ. Схемы.

Зарядное устройство для автомобильного АКБ. Схемы.

По этой схеме собрать зарядное устройство для аккумулятора автомобиля своими руками сложнее, но она возможна в повторении и тоже не содержит дефицитных деталей. С её помощью допустимо заряжать 12-вольтовые аккумуляторы ёмкостью до 120 А/ч, ток заряда плавно регулируется.


Нажмите на изображение чтобы увеличить

Зарядка батареи производится импульсным током, в качестве регулирующего элемента используется тиристор. Помимо ручки плавной регулировки тока, эта конструкция имеет и переключатель режима, при включении которого зарядный ток увеличивается вдвое.

Режим зарядки контролируется визуально по стрелочному прибору RA1. Резистор R1 самодельный, выполненный из нихромовой или медной проволоки диаметром не менее 0.8 мм. Он служит ограничителем тока. Лампа EL1 — индикаторная. На её месте подойдёт любая малогабаритная индикаторная лампа с напряжением 24–36 В.

Понижающий трансформатор можно применить готовый с выходным напряжением по вторичной обмотке 18–24 В при токе до 15 А (размеры трансформатора внушительные, примерно 15х15х15 см. и выше). Если подходящего прибора под рукой не оказалось, то можно сделать самому из любого сетевого трансформатора мощностью 250–300 Вт. Для этого с трансформатора сматывают все обмотки, кроме сетевой, и наматывают одну вторичную обмотку любым изолированным проводом с сечением 6 мм. кв. Количество витков в обмотке — 42.

Тиристор VD2 может быть любым из серии КУ202 с буквами В-Н. Его устанавливают на радиатор с площадью рассеивания не менее 200 см. кв. Силовой монтаж устройства делают проводами минимальной длины и с сечением не менее 4 мм. кв. На месте VD1 будет работать любой выпрямительный диод с обратным напряжением не ниже 20 В и выдерживающий ток не менее 200 мА.

Настройка прибора сводится к калибровке амперметра RA1. Сделать это можно, подключив вместо аккумулятора несколько 12-вольтовых ламп общей мощностью до 250 Вт, контролируя ток по заведомо исправному эталонному амперметру (мультиметру, авометру).


Совсем элементарная схема простейшего зарядного устройства АКБ автомобилей

Диоды Д 242, Д 242А, конденсатор электролитический 2200 мкф 25 В

Трансформатор силовой

1 обмотка на 220 В, 2 обмотка 15 В от 6 А и можно до 15 А, ТС 180-2 от старого лампового ЧБ телевизора вполне подойдёт.

Данная схема ЗУ имеет большие пульсации на выходе.


Схема ЗУ с автоматическим отключением АКБ


Пусковое устройство

Применение пускового устройства будет особенно полезно автолюбителям, занимающимся эксплуатацией автомобиля в зимнее время года, так как оно продлевает срок службы аккумулятора, а также позволяет без проблем заводить холодный автомобиль зимой, даже при не полностью заряженном аккумуляторе. Из опыта известно, что при минусовой температуре аккумулятор снижает свою отдачу на 25…40%. А если он еще не полностью заряжен, то не сможет обеспечить требуемый для пуска двигателя начальный ток 200 А. Этот ток потребляет стартер в начальный момент раскрутки вала двигателя (номинальный ток потребления стартером около 80 А, но в момент пуска он значительно больше).

Простейшие расчеты показывают, что, для того чтобы пусковое устройство эффективно работало при подключении его параллельно с аккумулятором, оно должно обеспечивать ток не менее 100А при напряжении 10…14В. При этом номинальная мощность используемого сетевого трансформатора Т1 (рис.1) должна быть не менее 800 Вт. Как известно, номинальная рабочая мощность трансформатора зависит от площади сечения магнитопровода (железа) в месте расположения обмоток.


Рис.1.

Сама схема пускового устройства довольно проста, но требует правильного изготовления сетевого трансформатора. Для него удобно использовать тороидальное железо от любого ЛАТРА — при этом получаются минимальные габариты и вес устройства. Периметр сечения железа может быть от 230 до 280 мм (у разных типов автотрансформаторов он отличается). Перед намоткой обмоток необходимо закруглить напильником острые края на гранях магнитопровода, после чего его обматываем лакотканью или стеклотканью.

Первичная обмотка трансформатора содержит примерно 260…290 витков провода ПЭВ-2 диаметром 1,5…2,0 мм (провод может быть любого типа с лаковой изоляцией). Намотка распределяется равномерно в три слоя, с межслойной изоляцией. После выполнения первичной обмотки, трансформатор необходимо включить в сеть и замерить ток холостого хода. Он должен составлять 200…380 мА. При этом будут оптимальные условия трансформации мощности во вторичную цепь.

Если ток будет меньше, часть витков надо отмотать, если больше — домотать до получения указанной величины. При этом следует учитывать, что зависимость между индуктивным сопротивлением (а значит и током в первичной обмотке) и числом витков является квадратичной — даже незначительное изменение числа витков будет приводить к существенному изменению тока первичной обмотки.

При работе трансформатора в режиме холостого хода не должно быть нагрева. Нагрев обмотки говорит о наличии межвитковых замыканий или же продавливании и замыкании части обмотки через магнитопровод. В этом случае намотку придется выполнять заново.

Вторичная обмотка наматывается изолированным многожильным медным проводом сечением не менее 6 кв. мм (например типа ПВКВ с резиновой изоляцией) и содержит две обмотки по 15… 18 витков. Наматываются вторичные обмотки одновременно (двумя проводами), что позволяет легко получить их симметричность — одинаковые напряжения в обоих обмотках, которое должно находиться в интервале 12…13,8В при номинальном сетевом напряжении 220В. Измерять напряжение во вторичной обмотке лучше на временно подключенном к клеммам Х2, Х3 нагрузочном резисторе сопротивлением 5…10 Ом.

Показанное на схеме соединение выпрямительных диодов позволяет использовать металлические элементы корпуса пускового устройства не только для крепления диодов, но и в качестве теплоотвода без диэлектрических прокладок («плюс» диода соединен с крепежной гайкой).

Для подключения пускового устройства параллельно аккумулятору, соединительные провода должны быть изолированными и многожильными (лучше, если медные), с сечением не менее 10 кв. мм (не путать с диаметром). На концах провода, после облуживания, припаиваются соединительные наконечники. Контакты включателя S1 должны быть рассчитаны на ток не менее 5А, например типа Т3.


Зарядно-пусковое устройство Старт УПЗУ-У3 — схема, описание

Устройство предназначено для зарядки аккумулятора током не более 30А, также для пуска стартера дополнительным током 50А при наличии заряженного аккумулятора

Инструкция к ЗПУ Старт УПЗУ-У3 — Скачать

Зарядные устройства » Автосхемы, схемы для авто, своими руками
Очень мощное ЗУ для авто (ток до 50 Ампер)

Неоднократно мы с вами беседовали о всевозможных зарядных устройствах для автомобильного аккумуляторам на импульсной основе, сегодня тоже не исключение. А рассмотрим мы конструкцию ИИП, который может иметь выходную мощность 350-600 ватт,но и это не предел, поскольку мощность при желании можно поднять до 1300-1500 ватт, следовательно, на такой основе можно соорудить пуско-зарядное устройство, ведь при напряжении 12-14 Вольт с блока 1500 ватт можно снять до 120 Ампер тока! ну разумеется

Очень доступная зарядка для авто

Конструкция привлекла мое внимание еще месяц назад, когда на одном из сайтов на глаза попалась статейка. Схема регулятора мощности показалось довольно простой, поэтому решил использовать эту схему для своей конструкции, которая особа проста и не требует никакой наладки. Схема предназначена для зарядки мощных кислотных аккумуляторов с емкостью 40-100А/ч, реализована по импульсной основе. Основной, силовой частью нашего зарядного устройства является сетевой импульсный блок питания с мощностью 105

ШИМ регулятор для зарядного устройства

Совсем недавно решил изготовить несколько зарядных устройств для автомобильного аккумуляторы, который собирался продавать на местном рынке. В наличии имелись довольно красивые промышленные корпуса, стоило лишь изготовить хорошую начинку и все дела. Но тут столкнулся с рядами проблем, начиная от блока питания, заканчивая узлом управления выходного напряжения. Пошел и купил старый добрый электронный трансформатор типа ташибра (китайский бренд) на 105 ватт и начал переделку.

Простое зарядное устройство на микросхеме LM317

Довольно простое зарядное устройство автоматического типа можно реализовать на микросхеме LM317, которая из себя представляет линейный стабилизатор напряжения с регулируемым выходным напряжением. Микросхема может также работать в качестве стабилизатора тока.

ПРОСТОЕ САМОДЕЛЬНОЕ ЗАРЯДНОЕ ДЛЯ АВТО

Качественное зарядное устройство для авто аккумулятора, на рынке можно приобрести за 50$, а сегодня расскажу самый простой способ изготовления такого зарядного устройства с минимальными расходами денежных средств, оно простое и изготовить сможет даже начинающий радиолюбитель.

Зарядное устройство для аккумулятора

Конструкцию простейшего зарядного устройства для автомобильных аккумуляторов можно реализовать за пол часа с минимальными затратами, ниже будет описан процесс сборки такого зарядного устройства.

ЗУ для аккумуляторов различного класса — схема

В статье рассмотрено простое по схемному решению зарядное устройство (ЗУ) для аккумуляторов различного класса, предназначенных для питания электрических сетей автомобилей, мотоциклов, фонарей и т.д. ЗУ простое в эксплуатации, не требует корректировок в процессе заряда аккумулятора, не боится коротких замыканий, несложно и дешево в изготовлении.

Почти пуско-зарядное устройство

Недавно в интернете попалась схема мощного зарядного устройство для автомобильных аккумуляторов с током до 20А. На самом деле это мощный регулируемый блок питания собранный всего на двух транзисторах. Основное достоинство схемы — минимальное количество используемых компонентов, но сами компоненты довольно недешевые, речь идет о транзисторах.

Все зарядки и питания в один прикуриватель — разгрузка…

Естественно у каждого в машине есть зарядки в прикуриватель для всякого рода девайсов навигатор, телефон и т.д. Прикуриватель естественно не без размерный и тем более он один (вернее гнездо прикуривателя), а если еще и человек курящий то сам прикуриватель надо вынуть куда то положить, а если уж надо что-то подключить в зарядку то тогда использование прикуривателя по прямому назначению просто невозможно, можно решить подключение всякого рода тройников с гнездом как прикуриватель, но это как то

ЗУ для аккумулятора из дешевого китайского БП

Недавно в голову пришла идея собрать автомобильное зарядное устройство на базе дешевых китайских БП с ценой 5-10$. В магазинах электроники сейчас можно найти такие блоки, которые предназначены для запитки светодиодных лент. Поскольку такие ленты питаются от 12 Вольт, следовательно выходное напряжение блока питания тоже в пределах 12Вольт

ЗУ для сотовых и планшетов от сети 12 Вольт

Представляю конструкцию несложного DC-DC преобразователя, который позволит вам зарядить мобильный телефон, планшетный компьютер или любое другое портативное устройство от автомобильной бортовой сети 12 Вольт. Сердцем схемы является специализированная микросхема 34063api разработанная специально для таких целей.

ЗУ из электронного трансформатора — умощнение

После статьи зарядного устройство из электронного трансформатора на мой электронный адрес поступило много писем, с просьбой пояснить и рассказать — как умощнить схему электронного трансформатора, и чтобы не писать каждому пользователю отдельно, решил напечатать эту статью, где я расскажу о тех основных узлах, которые нужно будет переделать для увеличения выходной мощности электронного трансформатора.

Зарядное устройство или простой стабилизатор тока

Мне пришлось совсем недавно самостоятельно соорудить зарядное устройство для автомобильного аккумулятора с током 3 – 4 ампер. Конечно мудрить, что то не желания, не времени не было и в первую очередь вспомнилась мне схема стабилизатора зарядного тока. По этой схеме очень просто и надежно сделать зарядное устройство.

Зарядные устройства из подручных средств

Очень часто возникает проблема с зарядкой автомобильного аккумулятора, при этом зарядное устройство под рукой не имеется, как же быть в этом случае ? Сегодня я решил напечатать эту статью, где намерен пояснить все известные способы зарядки автомобильного аккумулятора, интересно правда ?

ЗУ для мощных автомобильных аккумуляторов

Довольно простой и качественный импульсный источник питания можно собрать с применением микросхемы IR2153. Микросхема из себя представляет самотактируемый полумостовой драйвер, которая довольно часто используется в промышленных балластах для лам дневного освящения.

Автомобильные зарядные устройства. Схемы. Принцип работы.

Содержание

Обзор распространённых автомобильных зарядных устройств. Принципиальные схемы. Назначение. Устройство. Возможные неисправности.

Зима. Мороз. Двигатель запускается тяжело. Резко возрастает нагрузка на аккумулятор. А за состоянием аккумулятора нужно следить: проверять и вовремя его заряжать. Летом АКБ редко когда приходится заряжать, часто хватает зарядки от генератора автомобиля, а зима — это время частого использования автомобильных зарядных устройств.

Рассмотрим некоторые модели зарядных устройств промышленного производства, выпускаемых раньше и наиболее часто используемых автомобилистами.

 УСТРОЙСТВО ЗАРЯДНО-ВЫПРЯМИТЕЛЬНОЕ БЫТОВОЕ ТИПА УЗС-П-12-6,3 УХЛ 3.1. «Электроника», «Электроника-М», «Электроника-И» 

Устройство зарядно-выпрямительные с плавным регулированием стабилизированного тока зарядки предназначена для зарядки и подзарядки стартерных свинцово-кислотных аккумуляторных батарей типа 6 СТ (12В.) и 3 СТ (6 В.) ёмкостью до 60 А-ч в автоматическом и ручном режимах.

Разрешается заряжать батареи емкостью более 60 А-ч, но при этом ток зарядки не должен превышать 6,3 А!

12-вольтовая батарея может заряжаться как автоматическом, так и в ручном режимах, а 6-вольтовая батарея заряжается только в ручном режиме. Можно заряжать последовательно соединенные две 6-вольтовые батареи.

С помощью зарядного устройства можно определить полярность аккумуляторных батарей.

Устройство зарядное имеет электронную защиту от короткого замыкания при подключении его к аккумуляторной батарее, а также при ошибочной переполюсовки.

Технические характеристики зарядного устройства
ТИПА УЗС-П-12-6,3 УХЛ 3.1. «Электроника», «Электроника-М», «Электроника-И»
  • Питание устройства осуществляется от сети переменного тока напряжением (220±22) В и частотой 50 и 60 Гц.
  • Максимальный ток зарядки — 6,3 А.
  • Диапазон регулирования стабилизированного тока зарядки от 0,2 до 6,3 А.
  • Номинальное напряжение заряжаемой батареи — 12 В.
Устройство

Органы управления и индикации устройства зарядного выведены на лицевую панель:

  • в  устройстве зарядном «Электроника» стрелочный индикатор предназначен для индикации величины тока зарядки.
  • в устройстве зарядном «Электроника–И» величина тока зарядки определяется по маркировке, нанесенной около светодиодного индикатора;
  • в устройстве зарядном «Электроника-М» величина тока зарядки определяется по нанесенной на панели маркировке;
  • регулятор предназначен для регулирования величины тока зарядки.
  • индикаторы предназначены для определения режима работы устройства зарядного.
  • кнопка КОНТРОЛЬ предназначена для контроля работоспособности и запуска устройства зарядного при подключении незаряженной емкостной нагрузки, а также слабозаряженной аккумуляторной батареи.

У зарядного устройства «Электроника–И» шаг индикации значения зарядного тока составляет :

  • 0,5А – у12 разрядного индикатора тока;
  • 1,0А – у 6 разрядного индикатора тока.
 Порядок работы

Режим зарядки батарей согласно требованиям «Инструкции по эксплуатации» батарей аккумуляторных.

Устройство зарядное функционирует только с емкостной нагрузкой. Для запуска устройства зарядного, при подключении к устройству слабозаряженной аккумуляторной батареи или незаряженной емкостной нагрузки, необходимо нажимать кнопку КОНТРОЛЬ до включения устройства (до 1/3 секунд), что определяется включением индикатора.

В устройстве зарядном «Электроника – М» величина зарядного тока определяется по маркировке, нанесенной на панели, а также по яркости свечения индикатора. Отклонение величины тока зарядки от маркированного значения при номинальном значении напряжения питания не более ±0,5А. При зарядке аккумуляторной батареи с наличием сульфатации значение зарядного тока может отличаться от указанного.

Работа устройства зарядного при зарядке 12-вольтовой и 6-вольтовой аккумуляторных батарей в ручном режиме.

Установите ручку регулятора в левое крайнее положение, переключатель на режим работы РУЧ.

Подключите к устройству зарядному с помощью кабеля нагрузки аккумуляторную батарею. Зажим со знаком «+» подключите к клемме «+» аккумуляторной батареи, со знаком «-» к клемме «-».

Включите устройство зарядное в сеть: должен включиться (загореться) индикатор, установите регулятором тока необходимую величину тока зарядки, при этом должен включиться (загореться) индикатор, сигнализирующий о протекании зарядного тока. Признаком окончания процесса зарядки является обильное газовыделение, кипение во всех элементах батареи, а также постоянство плотности электролита и напряжения на батарее в течение 2-3 часов.

Порядок работы при зарядке 12-вольтовой аккумуляторной батареи в автоматическом режиме.
  • Установите ручку регулятора в левое – крайнее положение. Подключите к устройству зарядному с помощью кабеля нагрузки аккумуляторную батарею. Зажим со знаком «+» подключите к клемме «+» аккумуляторной батареи, со знаком «-» к клемме «-».
  • Включите устройство зарядное в сеть, при этом должен включиться индикатор.
  • Установите ручкой регулятора необходимую величину зарядного тока, включается индикатор, переключатель на режим работы «АВТ». Стрелочный индикатор в устройстве зарядном «Электроника» показывает величину тока зарядки, далее наступает бестоковая пауза, индикатор отключается, а стрелка индикатора на нулевой отметке. После бестоковой паузы начинается процесс зарядки аккумуляторной батареи: зарядка-пауза-зарядка-пауза. Длительность бестоковой паузы зависит от степени заряженности аккумуляторной батареи.
  • Признаками окончания процесса зарядки являются длительные без токовые паузы, обильное газовыделение, а также постоянство плотности электролита и напряжения на аккумуляторной батарее.
  • Для окончательной зарядки аккумуляторной батареи рекомендуем в конце процесса зарядки перейти на ручной режим.

 ВНИМАНИЕ!

Стабилизация тока зарядки устройства зарядного в режиме  «РУЧ» и в режиме «АВТ» не осуществляется при зарядке аккумуляторных батарей с наличием сульфатации электродной массы, с прорастанием сепараторов или их разрушением, с короблением электродов, с наличием вредных примесей в электролите. В большинстве случаев при этом происходит самопроизвольное неуправляемое снижение тока зарядки.

Порядок работы при определении состояния 12-вольтовой аккумуляторной батареи.
  1. Подключите к устройству зарядному с помощью кабеля нагрузки аккумуляторную батарею. Зажим со знаком «+» подключите к клемме «+» аккумуляторной батареи, со знаком «-» к клемме «-».
  2. Подключите устройство зарядное к сети. Установите ручкой регулятора необходимую величину тока зарядки, переключатель на режим работы «АВТ».
  3. Включается индикатор, а стрелочный индикатор в устройстве зарядном «Электроника» показывает величину тока зарядки, далее наступает бестоковая пауза, отключается индикатор, а стрелка индикатора на нулевой отметке. Проконтролируйте по индикаторам бестоковую паузу. Если бестоковая пауза длится (0,5-1) секунд, аккумуляторную батарею необходимо зарядить. Если бестоковая пауза длится (1-2) минуты, аккумуляторная батарея не требует зарядки.
  4. Описанный временной режим работы устройства может не совпадать при включении аккумуляторной батареи, отработавший свой гарантийный срок, а также при следующих отклонениях в аккумуляторной батарее:
  • коррозия токоотводов положительных электродов;
  • оплывание активной массы положительного электрода;
  • коробление электродов;
  • прорастание сепараторов или их разрушение;
  • короткое замыкание между электродами различной полярности;
  • необратимая сульфатация электродной массы, наличие вредных примесей в электролите.
Определение полярности аккумуляторных батарей при отсутствии на них маркировки.

Подключите зажимы зарядного устройства к клеммам аккумуляторной батареи, ручку регулятора тока установите в крайнее левое положение, переключатель на режим работы «РУЧ». Подключите устройство зарядное к сети. Поверните ручку регулятора тока по часовой стрелке. Если при этом включается индикатор, полярность клемм аккумулятора соответствует маркировке на зажимах кабеля нагрузки. Если индикатор не включается, поменяйте местами зажимы и произведите проверку повторно.

Ещё одна схема зарядного устройства «ЭЛЕКТРОНИКА»

Печатная плата зарядного устройства «ЭЛЕКТРОНИКА»

Схема пуско-зарядного устройства для автомобильного АКБ «ЭЛЕКТРОНИКА ЗП-01»

Другой вариант схемы «Электроника ЗП-01»:

Этот вариант, но перерисованый:

Устройство зарядное с автоматическим отключением УЗ-ПА-6/12-6,3-УХЛЗ.1

Устройство зарядное с автоматическим отключением УЗ-ПА-6/12-6,3-УХЛЗ-1 (в дальнейшем — устройство УЗ-ПА) предназначено для заряда 6 и 12-вольтовых стартерных аккумуляторных батарей, установленных на мотоциклах и автомобилях личного пользования. Перед началом эксплуатации устройства УЗ-ПА необходимо изучить руководство по эксплуатации, а также правила по уходу и эксплуатации аккумуляторной батареи. Устройство УЗ-ПА имеет плавную установку зарядного тока, электронную схему защиты, обеспечивающую сохранность аккумуляторной батареи при перегрузках, коротких замыканиях и неправильной полярности подключения выходных зажимов. При этом защита выполнена таким образом: что на выходе зарядный ток появляется только в случае, если к выходным зажимам подключен источник напряжения (аккумуляторная батарея).

Внимание. Данное устройство производит заряд при наличии напряжения на аккумуляторной батарее не менее 4-х вольт.

В устройстве отсутствует указанный на схеме переключатель SВ1 и кнопка   на лицевой панели. Обнуление счетчика таймера происходит автоматически при включении устройства в сеть.

Устройство УЗ-ПА рассчитано на эксплуатацию в условиях умеренного климата при температуре окружающего воздуха от минус 10° С до плюс 40° С и относительной влажности до 98% при 25° С.

ТЕХНИЧЕСКИЕ   ДАННЫЕ
Напряжение питающей сети(220±22) В
Частота сети(50 ±0,5) Гц
Диапазон установки тока зарядаот 0,5 до 6,3 А
Переменное напряжение для питания переносной автомобильной лампы(36 ±3) В
Автоматическое отключение от аккумуляторной батареичерез (10,5±1) ч
Габаритные размеры, не более240x175x85 мм
Масса, не более4,2 кг
Потребляемая мощность, не более145 Вт
Устройство УЗ-ПА-6/12-6,3 и принцип работы

Устройство УЗ-ПА представляет собой выпрямитель, с плавной установкой тока. С выводов 3,6 сетевого трансформатора TV1 напряжение поступает на 2-х-полупериодный управляемый выпрямитель, выполненный на тиристорах VS1 и VS2. Выпрямленное напряжение подается на аккумуляторную батарею через контакты XI («плюс») и Х2 («минус»).

Для контроля величины тока заряда служит индикатор тока РА1.

Для отключения цепи заряда от аккумулятора через (10,5 ±1) ч, управления работой тиристоров и установки необходимого тока заряда служит схема, собранная на транзисторах VT1, VT4, VТ8, VТ9, VТ10 и интегральной схеме (ДД1).

На транзисторе VТ1 выполнен формирователь импульсов с частотой 50 Гц, на интегральной схеме ДД1 — счетчик с импульсов, на транзисторах VТ8 и VТ10 — делитель частоты на 2, на транзисторе VТ6 — управляемый генератор (стабилизатор) тока.

При этом необходимый ток заряда устанавливается потенциометром RP1.

Генератор управляющих импульсов выполнен на транзисторах VТЗ, VТ7. Транзистор VТ2 является усилителем этих импульсов по мощности.

На диоде VД1 выполнена схема защиты от короткого замыкания и переполюсовки выводов.

Схема на транзисторах VТ4 и VТ5 служит для переключения устройства в режим уменьшенного тока (через 6 — 8 часов ток уменьшится в 1,3  — 2,5 раза).

На диодах VД7 и VД8 собран выпрямитель питания схемы формирователя импульсов и счетчика.

Диоды VД5 и VД6 запрещают подачу импульсов на управляющий электрод тиристора в момент, когда к тиристору приложено обратное напряжение.

Для индикации включения сети и конца заряда служат светодиоды VД2 и VД13.

С выводов 3 и 6 силового трансформатора снимается переменное напряжение 36 В.

Конструктивно устройство состоит из нижнего и верхнего корпуса, лицевой панели, радиатора, печатной платы с радиоэлементами и силового трансформатора.

ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ И МЕТОДЫ ИХ УСТРАНЕНИЯ

Устройство зарядное просто и надежно в эксплуатации. Однако, в практике имеются случаи, когда потребители из-за неправильного использования не могут получить необходимый зарядный ток и ошибочно считают это неисправностью зарядного устройства. Некоторые неисправности приведены в таблице ниже. 

Перечень возможных неисправностей и методы их устранения

Наименование неисправностей, внешнее проявление и дополнительные признаки

Вероятная причина

Метод  устранения

Примечание

1. При подключении зарядного устройства к аккумуляторной батарее отсутствует показание зарядного тока1. Ручка недостаточно    повернута по часовой    стрелке1. Вращением    ручки установить необходимый ток
2. Плохой контакт между выходными зажимами «+» и «-» и выводами аккумуляторной батареи2. Проверить состояние выводов. При необходимости зачистить их
3.  Перепутана  полярность при подключении зарядного      устройства к выводам аккумуляторной батареи3. Проверить полярность и подключить согласно рис. 4
4. Выходные зажимы «+» и «-» замыкаются между собой4.  Разомкнуть   зажимы
5. Короткое замыкание в аккумуляторной батарее или она чрезмерно  разряжена, напряжение на ней менее 4В)5. Проверить аккумуляторную батарею, если устройство  исправноПроверить   устройство   следующим  образом:     подключить  к  выходным  зажимам соблюдая полярность («+» к «+», «-» к  «-») любой источник  постоянного напряжения не менее 4 В (заведомо исправную аккумуляторную батарею или батарею из сухих элементов): вращая ручку проверить   по     амперметру наличие тока. Если ток заряда есть, то устройство    исправно, неисправность следует искать  в  заряжаемой  аккумуляторной  батарее
2. При подключении зарядного устройства к аккумуляторной батарее стрелка амперметра зашкаливает1.  Ручка выведена   вправо до конца1. Установить ток вращением  ручки против  часовой стрелки
3. При включении зарядного   устройства    в сеть не горит светодиод СЕТЬ1. Сгорел предохранитель1. Заменить предохранитель

 Другой похожий вариант схемы устройства зарядного автоматического «ЭЛЕКТРОНИКА»

Отличие от предыдущей схемы — добавление транзистора VT11 КТ315Г, ограничивающий максимальный ток устройства.

Устройство зарядно-разрядное УЗР-П-12/6-6,3-УХЛ3,1

  На рисунке стрелками обозначены основные узлы схемы.

Назначение

Устройство зарядно-разрядное (УЗР) предназначено для заряда обычным и восстановительным режимом стартерных аккумуляторных батарей всех типов, применяемых в отечественных автомобилях, мотоциклах и мотороллерах, а также для питания низковольтной активной нагрузки.

В режиме восстановительного заряда УЗР обеспечивает восстановление структуры активных масс свинцового аккумулятора путем поляризации его электродов асимметричным током инфранизкой частоты, что позволяет снизить скорость коррозии решеток положительных пластин и увеличить срок службы аккумулятора на 20—40%.

Электронная схема зарядного устройства обеспечивает его защиту при несоответствии полярности подключаемых с аккумуляторной батарее зажимов, коротких замыканиях. А так же есть возможность плавно регулировать ток заряда от 0,1 до 6А, при входном напряжении 220 ±22 В.

Восстановительные заряды рекомендуется проводить:
  • один раз в 3—4 месяца при малоинтенсивной эксплуата­ции аккумулятора;
  • ежемесячно при длительной стоянке;
  • до и после длительного бездействия;
  • при введении в действие сухозаряженных аккумуля­торов с просроченным сроком хранения.
Технические характеристики
  • Номинальное напряжение питающей сети, В ~ 220;
  • Номинальное напряжение заряжаемой акку­муляторной батареи, 6-12;
  • Номинальный выпрямительный ток, А — 6,3;
  • Максимальная потребляемая мощность, Вт не более — 160.
  • Масса, кг, не более — 4,3 кг.
В восстановительном режиме работы:
  • время протекания тока в прямом направлении, режим заряда — от 90 до 160 с.;
  • время протекания тока в обратном направлении, режим разряда — от 9 до 24 с.

Устройство для автоматической зарядки и разрядки автомобильных аккумуляторов на таймере КР1006ВИ1

Принцип работы зарядно-разрядного устройства

Зарядно-разрядное устройство состоит из собственно зарядного устройства (ЗУ), обозначенного на схеме прямоугольником, и электронного узла управления. Питание узла управления осуществляется от аккумуляторной батареи. В качестве порогового элемента (компаратора), вырабатывающего сигнал при достижении напряжением на аккумуляторе значения свыше 14,2…14,5 В и при снижении до 10,5 В, используется интегральный таймер КР1006ВИ1 (микросхема DA1).

Ток зарядки устанавливают в соответствии с инструкцией по эксплуатации аккумуляторной батареи, т.е. равным 1/10 или 1/20 емкости батареи. Если зарядка идет без контроля оператора, следует обеспечить ограничение колебаний зарядного тока при возможных колебаниях сетевого напряжения.

Самый простой способ стабилизации тока — включение двух-трех параллельно соединенных автомобильных ламп мощностью 40… 50 Вт в разрыв одного из выходных проводов зарядного устройства. Такой же эффект может быть достигнут включением лампы напряжением 220 В и мощностью 200…300 Вт в разрыв одного из входных (сетевых) проводов ЗУ. Сопротивление вольфрамовой нити ламп накаливания возрастает с увеличением температуры, т.е. лампа обладает свойствами стабилизатора тока. Зарядный ток содержит дозированную разрядную составляющую, что благотворно сказывается на протекании электрохимических процессов в батарее. Разрядная составляющая тока протекает через резистор R 19 и транзистор VT3 и равна примерно 0,5 А.

В процессе зарядки напряжение на полюсных выводах аккумулятора плавно увеличивается. Известно, что напряжение полностью заряженной батареи составляет 14,2…14,5 В. Измерение этого напряжения следует производить в отсутствие зарядного тока, поскольку импульсы зарядного тока в зависимости от степени разряженности аккумуляторной батареи увеличивают мгновенное значение напряжения на ее зажимах на 1…3 В по сравнению с режимом, когда ток зарядки не протекает. Для обеспечения такого режима измерения в устройстве использованы элементы U1, R4, VT2. В режиме зарядки транзистор VT2 открыт.

Подробнее о работе этого зарядно-разрядного устройства Вы можете прочитать скоро в следующей статье.

Ещё один вариант автоматического зарядного устройства на двух счётчиках К176ИЕ12 и К176ИЕ8

На транзисторе VT6 КТ503Б собран формирователь импульсов для работы счётчиков (100 Гц).

Запускается зарядное устройство кнопкой «Пуск» после чего счётчики сбрасываются и начинается отчёт времени. По истечении заданного числа импульсов с выв 3 МС К176ИЕ8  логич. 0 сначала закрывается полевой транзистор VT5 (КП103Б), тем самым ограничивая ток зарядки.  Затем после появления лог. 0 (сигнала закрытия) с выв.4 МС К176ИЕ8 закрывается VT4 (КП103Б), тем самым отключается зарядка АКБ. Через VT1, VT2, VT3 осуществляется регулировка управления тиристорами.

Зарядное устройство «КЕДР-АВТО»

Ниже приведены несколько схем зарядного устройства семейства «Кедр»

При написании статьи использовались руководства по эксплуатации вышеописанных устройств.





А. Зотов, Волгоградская обл. 



ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ



П О П У Л Я Р Н О Е:

  • Зарядное устройство для АКБ 12В, 7а-ч
  • Простое зарядное устройство для АКБ

    Ниже представлена простая схема для автоматического поддержания аккумулятора в заряженном состоянии. Схема не содержит дорогих и дефицитных деталей. Простое и недорогое зарядное устройство предназначено для 12В, 7 а/ч свинцово-кислотных аккумуляторных батарей. Можно также использовать для зарядки автомобильных аккумуляторов и систем аварийного освещения и т.п.

    Подробнее…

  • Звуковой сигнализатор поворотов
  • Чтобы не забыть выключить рычаг поворотов или ручника предлагаю свой автомобиль дополнить не сложным устройством — сигнализатором. Звуковой сигнализатор собран на распространённой и недорогой микросхеме К155ЛА3. Сигнализатор подключается к контрольной лампе поворотов или ручника.  Подробнее…

  • Индикатор для проверки и контроля за аккумулятором на TCA965.
  • Далеко не все автомобили оборудованы электронными вольтметрами. А это достаточно нужный прибор в автомобиле. Он позволяет следить за зарядкой и состоянием аккумулятора. Это очень важно, особенно в зимний период. Подробнее…


Популярность: 159 969 просм.

Автоматическое зарядное устройство для свинцово-кислотных аккумуляторных батарей.
РадиоКот >Схемы >Питание >Зарядные устройства >

Автоматическое зарядное устройство для свинцово-кислотных аккумуляторных батарей.

Необходимость зарядного устройства для свинцово -кислотных аккумуляторных батарей возникла давно. Первое зарядное было сделано еще для автомобильного аккумулятора на 55А.Ч. Со временем в хозяйстве появились необслуживаемые гелиевые батареи различных номиналов, тоже нуждающиеся в зарядке. Городить для каждой батареи отдельное зарядное устройство, по крайней мере, неразумно. Поэтому пришлось взять в руки карандаш, проштудировать доступную литературу, в основном журнал «Радио», и совместно с товарищами родить концепцию универсального автоматического зарядного устройства (УАЗУ) для 12-ти вольтовых аккумуляторов от 7АЧ до 60АЧ. Получившуюся конструкцию выношу на ваш суд. Сделано в железе более 10 шт. с различными вариациями. Все устройства работают без нареканий. Схема легко повторяется с минимальными настройками.
За основу сразу был взят блок питания от старого ПК формата АТ, поскольку обладает целым комплексом положительных качеств: малые размеры и вес, хорошая стабилизация, мощность с большим запасом, ну и самое главное уже готовая силовая часть, к которой осталось прикрутить блок управления. Идею БУ подсказал С. Голов в своей статье «Автоматическое зарядное устройство для свинцово-кислотной аккумуляторной батареи», журнал «Радио» №12 2004г., спасибо ему отдельное.
Коротко повторю алгоритм зарядки батареи. Весь процесс состоит из трех этапов. На первом этапе, когда батарея полностью или частично разряжена, допустимо проводить зарядку большим током, достигающим 0,1:.0,2С, где С — емкость аккумулятора в ампер-часах. Зарядный ток должен быть ограничен сверху указанным значением или стабилизирован. По мере накопления заряда растет напряжение на клеммах батареи. Это напряжение контролируем. По достижению уровня 14,4 — 14,6 вольта первый этап завершен. На втором этапе необходимо поддерживать постоянным достигнутое напряжение и контролировать зарядный ток, который будет снижаться. Когда ток заряда упадет до 0,02С, батарея наберет заряд не менее 80%, переходим к третьему этапу заключительному. Уменьшаем напряжение заряда до 13,8 в. и поддерживаем его на этом уровне. Ток заряда постепенно снизится до 0,002:.0,001С и стабилизируется на этом значении. Такой ток для батареи не опасен, в этом режиме батарея может находиться долго, без вреда для себя и всегда готова к применению.
Теперь собственно поговорим о том как это все сделано. БП от компьютера был выбран из соображения наибольшего распространения схемного решения, т.е. узел управления выполнен на микросхеме TL494 и ее аналогах (MB3759, КА7500, КР1114ЕУ4) и слегка переделан:

Демонтированы схемы выходных напряжений 5в, -5в, -12в, отпаяны резисторы обратной связи по 5 и 12в, отключена схема защиты от перенапряжения. На фрагменте схемы отмечено крестиком места разрыва цепей. Оставлена только выходная часть 12в, можно еще заменить диодную сборку в цепи 12в на сборку снятую с 5-ти вольтовой цепи, она помощней, хотя не обязательно. Убраны все лишние провода, оставили только по 4 провода черного и желтого цвета длинной сантиметров по10, выход силовой части. К 1-й ноге микросхемы припаиваем проводок длинной 10 см это будет управление. На этом доработка закончена.
В блоке управления дополнительно, по просьбам многочисленных желающих иметь такую штуку, реализован режим тренировки и схема защиты от переполюсовки батареи для особо невнимательных. И так БУ:

Основные узлы: параметрический стабилизатор опорного напряжения 14,6в VD6-VD11, R21
Блок компараторов и индикаторов, реализующих три этапа зарядки батареи DA1.2, VD2 первый этап, DA1.3, VD5 второй, DA1.4, VD3 третий.
Стабилизатор VD1, R1, C1 и делители R4, R8, R5, R9, R6, R7 формирующие опорное напряжение компараторов. Переключатель SA1 и резисторы обеспечивают изменение режима зарядки для различных аккумуляторов.
Блок тренировки DD К561ЛЕ5, VT3, VT4, VT5, VT1, DA1.1.
Защита VS1, DA5, VD13.

Как это работает. Предположим что мы заряжаем автомобильный аккумулятор 55АЧ. Компараторы отслеживают падение напряжения на резисторе R31. На первом этапе схема работает как стабилизатор тока, при включении ток заряда будет около 5А, горят все 3 светодиода. DA1.2 будет держать ток заряда пока напряжение на батарее не достигнет 14,6в., DA1.2 закроется, погаснет VD2 красный. Начался второй этап.
На этом этапе напряжение 14,6в на батарее поддерживается стабилизаторомVD6-VD11, R21, т.е. ЗУ работает в режиме стабилизации напряжения. По мере увеличения заряда батареи, ток падает и как только он опустится до 0,02С, сработает DA1.3. Погаснет желтый VD5 и откроется транзистор VT2. Шунтируются VD6, VD7, напряжение стабилизации скачком снижается до 13,8 в. Перешли к третьему этапу.
Дальше идет дозаряд батареи очень маленьким током. Поскольку к этому моменту батарея набрала примерно 95-97% заряда, ток снижается постепенно до 0,002С и стабилизируется. На хороших батареях может снизится до 0,001С. На этот порог и настроен DA1.4. Светодиод VD3 может погаснуть, хотя на практике он продолжает слабо светить. На этом процесс можно считать завершенным и использовать аккумулятор по назначению.

Режим тренировка. При длительном хранении аккумулятора, его периодически рекомендуется тренировать, так как это может продлить жизнь старых батарей. Поскольку аккумулятор штука весьма инерционная, заряд-разряд должны длиться по несколько секунд. В литературе встречаются устройства которые тренируют батареи с частотой 50ГЦ, что печально сказывается на ее здоровье. Ток разряда составляет примерно десятую часть тока заряда. На схеме переключатель SA2 показан в положении тренировка, SA2.1 разомкнут SA2.2 замкнут. Включена схема разряда VT3, VT4, VT5, R24, SA2.2, R31 и взведен триггер DA1.1, VT1. На элементах DD1.1 и DD1.2 микросхемы К561ЛЕ5 собран мультивибратор. Он выдает меандр с периодом 10-12 секунд. Триггер взведен, элемент DD1.3 открыт, импульсы с мультивибратора открывают и закрывают транзисторы VT4 и VT3. Транзистор VT3 в открытом состоянии шунтирует диоды VD6-VD8 блокируя зарядку. Ток разряда батареи идет через R24, VT4, SA2.2, R31. Батарея 5-6 секунд получает заряд и такое же время разряжается малым током. Этот процесс длится первый и второй этап зарядки, затем срабатывает триггер, закрывается DD1.3, закрываются VT4 и VT3. Третий этап проходит в обычном режиме. В дополнительной индикации режима тренировки нет необходимости, поскольку мигают светодиоды VD2, VD3 и VD5. После первого этапа мигают VD3 и VD5. На третьем этапе VD5 светит не мигая. В режиме тренировки заряд батареи длится почти в 2 раза дольше.

Защита. В первых конструкциях вместо тиристора стоял диод, который защищал ЗУ от обратного тока. Работает очень просто, при правильном включении оптрон открывает тиристор, можно включать зарядку. При неправильном, загорается светодиод VD13, меняй местами клеммы. Между анодом и катодом тиристора нужно припаять неполярный конденсатор 50 мкф 50 вольт или 2 встречно спаянных электролита 100мкф 50в.

Конструкция и детали. ЗУ собрано в корпусе БП от компьютера. БУ изготовлен по лазерно-утюжной технологии. Рисунок печатной платы прилагается в архивном файле, выполнен в SL4. Резисторы МЛТ-025, резистор R31 — кусок медного провода. Измерительную головку РА1 можно и не ставить. Просто валялась и ее приспособили. Поэтому значения R30 и R33 зависят от миллиамперметра. Тиристор КУ202 в пластмассовом исполнении. Собственно исполнение видно на прилагаемых фото. Разъем и кабель для подключения питания монитора использовали для включения батареи. Переключатель выбора тока зарядки малогабаритный на 11 положений, резисторы припаяны к нему. Если ЗУ будет заряжать только автомобильные аккумуляторы переключатель можно не ставить, впаяв просто перемычку. DA1 — LM339. Диоды КД521 или аналогичные. Оптрон PC817 можно поставить другой с транзисторной исполнительной частью. Платка БУ прикручена к алюминиевой пластине толщиной 4 мм. Она служит радиатором для тиристора и КТ829, на ней же в отверстия вставлены светодиоды. Получившийся блок прикручен к передней стенке БП. ЗУ не греется, поэтому вентилятор подключен к БП через стабилизатор КР140ен8б, напряжение ограничено до 9в. Вентилятор вращается помедленней и практически его не слышно.

Регулировка. Первоначально устанавливаем вместо тиристора VS1 мощный диод , не впаивая VD4 и R20, подбираем стабилитроны VD8-VD10 так чтобы напряжение на выходе, без нагрузки, было 14,6вольта. Далее запаиваем VD4 и R20 и подбором R8, R9, R6 выставить пороги срабатывания компараторов. Вместо батареи подключаем проволочный переменный резистор 10 Ом, устанавливаем ток 5 ампер, впаиваем переменный резистор вместо R8, крутим его при напряжении 14,6в должен погаснуть светодиод VD2, мереям введенную часть переменного резистора и впаиваем постоянный. Впаиваем переменный резистор вместо R9, выставив примерно 150 Ом. Включаем ЗУ, увеличиваем ток нагрузки пока не сработает DA1.2, затем начинаем уменьшать ток до значения 0,1 ампера. Затем уменьшаем R9 пока не сработает компаратор DA1,3. Напряжение на нагрузке должно упасть до 13,8в и погаснет желтый светодиод VD5. Снижаем ток до 0,05 ампера, подбором R6 гасим VD3. Но лучше всего наладку проводить на хорошем разряженном аккумуляторе. Впаиваем переменные резисторы, выставляем их чуть больше указанных на схеме, подключаем амперметр и вольтметр к клеммам аккумулятора и делаем это за один раз. Батарею не сильно разряженную используем, тогда будет быстрее и точнее. Практика показала, что регулировка практически не требуется, если точно подобрать R31. Добавочные резисторы подбираются тоже легко: при соответствующем токе нагрузки, падение напряжения на R31 должно составлять 0,5в, 0,4в, 0,3в, 0,2в, 0,15в, 0,1в и 0,07в.
Вот, собственно и все. Да, еще, если дополнительным двухполюсным тумблером, одной половиной закоротить диод VD6, а другой стабилитрон VD9, то получится ЗУ для 6-ти вольтовых гелиевых батарей. Ток заряда надо выбрать наименьший переключателем SA1. На одном из собранных эта операция была успешно осуществлена.

Файлы:
Печатная плата в формате SL 4.0.

Вопросы, как обычно, складываем тут.


Как вам эта статья?

Заработало ли это устройство у вас?

5 лучших цепей зарядного устройства 6V 4Ah с использованием реле и MOSFET

Следующие 5 версий цепей зарядного устройства 6 A 4 AH были разработаны мной и размещены здесь в ответ на запрос г-на Раджи, давайте узнаем весь разговор ,

Технические характеристики

«Уважаемый сэр, пожалуйста, опишите цепь для зарядки 6-вольтовой 3,5-амперной свинцово-кислотной батареи от 12-вольтной батареи. Зарядное устройство должно автоматически прекратить зарядку, когда батарея полностью заряжена.

Пожалуйста, используйте транзистор вместо реле, чтобы прекратить зарядку, а также скажите, как использовать 12-вольтное реле для той же цепи.

Объясните, какой является безопасным и долговечным реле или транзистор для отключения зарядки. (В настоящее время я заряжаю вышеупомянутую батарею, просто используя LM317 с резисторами 220 кОм и 1 кОм и парой конденсаторов.) Я жду вашей статьи, спасибо «.

Конструкция

Следующая схема показывает простая автоматическая цепь зарядного устройства для аккумуляторов на 6 В от 4 до 10 Ач, использующая 12-вольтовое реле, предназначенное для автоматического отключения питания от аккумулятора, как только достигается полный уровень заряда аккумулятора.

Как это работает

Если предположить, что к цепи не подключена батарея, то при включении питания контакт реле будет на N / C, и никакое питание не сможет достичь цепи IC 741.

Теперь, когда батарея подключена, источник питания от батареи будет приводить в действие цепь, и, предполагая, что батарея находится в разряженном состоянии, контакт № 2 будет ниже, чем контакт № 3, вызывая высокий уровень на контакте № 6 ИС. Это включит драйвер реле транзистора, который, в свою очередь, переключит контакт реле с N / C на N / O, соединяя источник зарядки с аккумулятором.

Теперь аккумулятор начнет медленно заряжаться, и как только его клеммы достигнут напряжения 7 В, контакт № 2 будет стремиться стать выше, чем контакт № 3, в результате чего на контакте № 6 микросхемы разрядится, отключить реле и отключить питание от батареи.

Существующий низкий уровень на выводе № 6 также приведет к постоянному снижению уровня на контакте № 3 через связанный диод 1N4148, и, таким образом, система будет заблокирована до тех пор, пока питание не будет выключено и снова включено.

Если вы не хотите иметь такую ​​защелку, вы можете очень хорошо исключить диод обратной связи 1N4148.

Примечание : Секция светодиодных индикаторов для всех трех следующих диаграмм была недавно изменена после практического тестирования и подтверждения. «ВЫСОКИЙ» ВКЛ. ПИТАНИЕ ВКЛ.

Следующая схема показывает простую автоматическую схему зарядного устройства батареи 6 В 4 Ач без использования реле, а скорее непосредственно через транзистор, вы можете заменить BJT на полевой МОП-транзистор, чтобы также включить зарядку на высоком Ач. ,

Дизайн печатной платы для вышеупомянутой цепи

Дизайн макета печатной платы был сделан одним из заядлых последователей этого сайта, г-ном Jack009

Цепь № 2

ПОЖАЛУЙСТА, ПОДКЛЮЧИТЕ 10 мкФ ПО ПИН-Коду 2 И ПИН 4, ТАК ЧТО ВЫХОД OP AMP ВСЕГДА НАЧИНАЕТСЯ С ВЫСОКОГО ВКЛЮЧЕНИЯ ПИТАНИЯ ВКЛ.

Обновление:

Вышеприведенная схема зарядного устройства 6В на транзисторе имеет ошибку. На уровне полного заряда, как только отрицательный заряд батареи отключается с помощью TIP122, этот отрицательный заряд от батареи также отключается для цепи IC 741.

Это означает, что теперь микросхема 741 не может контролировать процесс разрядки батареи и не сможет восстановить зарядку батареи, когда батарея достигнет нижнего порога разряда?

Чтобы исправить это, нам нужно убедиться, что на уровне полного заряда отрицательный заряд батареи отключен только от линии питания, а не от цепи IC 741.

Следующая схема исправляет этот недостаток и гарантирует, что IC741 способен непрерывно контролировать и отслеживать состояние батареи при любых обстоятельствах.

ПОЖАЛУЙСТА, ПОДКЛЮЧАЙТЕ 10 мкФ ПО PIN2 И PIN4, ЧТОБЫ ВЫХОД OP AMP ВСЕГДА НАЧИНАЕТСЯ С ВЫСОКОГО ВКЛЮЧЕНИЯ ПИТАНИЯ ВКЛ.

Как настроить цепь

Изначально, удерживайте резистор обратной связи pin6 отключенным и без подключения батареи отрегулируйте R2, чтобы получить точно 7,2 В на выходе LM317, для цепи IC741.

Теперь просто поиграйте с предустановкой 10k и определите положение, в котором светодиоды просто переворачивают / переключают или меняют или меняют свое освещение.

Эта позиция в предустановленной настройке может рассматриваться как точка отсечения или пороговая точка.

Осторожно отрегулируйте его так, чтобы КРАСНЫЙ светодиод в первой цепи просто загорался …… но для второй цепи это должен быть зеленый светодиод, который должен светиться.

Теперь для схемы установлена ​​точка отсечки, закройте предустановку в этом положении и заново подключите резистор pin6 к показанным точкам.

Теперь ваша схема настроена на зарядку любой батареи 6 В 4 AH или других аналогичных батарей с функцией автоматического отключения, как только или каждый раз, когда батарея полностью заряжается в указанном выше наборе 7.2V.

Обе вышеупомянутые схемы будут работать одинаково хорошо, однако верхняя цепь может быть изменена для обработки больших токов даже до 100 и 200 AH, просто изменяя IC и реле. Нижняя цепь может быть выполнена для этого только до определенного предела, может быть до 30 А или около того.

Вторая схема сверху была успешно построена и протестирована Дипто, который является заядлым читателем этого блога. Ниже представлены фотографии прототипа солнечного зарядного устройства на 6 В:

Добавление управления током:

Автоматический контроль тока Функция регулятора может быть добавлена ​​к показанным выше конструкциям путем простого введения схемы BC547, как показано на следующей схеме:

Цепь № 3

ПОЖАЛУЙСТА, ПОДКЛЮЧАЙТЕ 10 мкФ ПО PIN2 И PIN4, ТАК ЧТО ВЫХОД OP AMP ВСЕГДА НАЧИНАЕТСЯ С A «ВЫСОКИЙ» ВКЛ. ПИТАНИЕ ВКЛ.

Токочувствительный резистор можно рассчитать по простой формуле закона Ома:

Rx = 0.6 / Максимальный зарядный ток

Здесь 0,6 В относится к пусковому напряжению транзистора BC547 с левой стороны, в то время как максимальный зарядный ток означает максимальную безопасную зарядку для батареи, которая может составлять 400 мА для свинцово-кислотной батареи 4AH.

Поэтому решение приведенной выше формулы дает нам:

Rx = 0,6 / 0,4 = 1,5 Ом.

Вт = 0,6 x 0,4 = 0,24 Вт или 1/4 Вт

Добавление этого резистора гарантирует, что скорость зарядки полностью контролируется и никогда не превышает установленного безопасного предела тока зарядки.

Отчет по испытанию. Видеоклип:

. В следующем видеоролике показано тестирование вышеуказанной схемы автоматического зарядного устройства в режиме реального времени. Так как у меня не было 6В батареи, я проверил конструкцию на 12В батарее, которая не имеет никакого значения, и все сводится к настройке предварительной установки для батареи 6В или 12В соответственно в соответствии с предпочтениями пользователя. Показанная выше конфигурация схемы не была изменена каким-либо образом.

Цепь была настроена на отключение при напряжении 13,46 В, которое было выбрано в качестве уровня отключения полной зарядки.Это было сделано для экономии времени, потому что фактическое рекомендуемое значение 14,3 В могло занять много времени, поэтому, чтобы сделать это быстро, я выбрал 13,46 В в качестве верхнего порога отсечки.

Однако следует отметить, что резистор обратной связи здесь не использовался, и активация нижнего порога была автоматически реализована схемой при напряжении 12,77 В в соответствии с характеристикой естественного гистерезиса IC 741.

Зарядное устройство 6 В №2

Вот еще одна простая, но точная автоматическая регулируемая цепь зарядного устройства для свинцово-кислотных батарей 6 В, которая отключает ток от батареи, как только батарея полностью заряжается.Светящийся светодиод на выходе указывает на полностью заряженное состояние батареи.

Как это работает

ДИАГРАММА КОНТУРА может быть понята по следующим пунктам:

Принципиально управление и регулирование напряжения осуществляется универсальной рабочей лошадкой IC LM 338.

Входное напряжение постоянного тока в диапазоне 30 применяется для ввода IC. Напряжение может быть получено из сети трансформатора, моста и конденсатора.

Значение R2 устанавливается для получения требуемого выходного напряжения в зависимости от напряжения аккумулятора, который необходимо зарядить.

Если требуется зарядить 6-вольтовую батарею, R2 выбирается для получения напряжения около 7 вольт на выходе, для 12-вольтовой батареи оно становится 14 вольт, а для 24-вольтовой батареи настройка выполняется при напряжении около 28 вольт ,

Приведенные выше настройки учитывают напряжение, которое необходимо приложить к заряжаемому аккумулятору, однако напряжение отключения или напряжение, при котором цепь должна быть отключена, задается регулировкой 10 K po

.
3 В, 4,5 В, 6 В, 9 В, 12 В, 24 В, цепь автоматического зарядного устройства с индикатором

Схема автоматического зарядного устройства «все в одном» обсуждается в следующем посте; схема может быть изменена многими различными способами в соответствии с индивидуальными требованиями и приложениями.

Следующая схема позволит вам зарядить любую батарею прямо от 1,5 В до 24 В, просто установив заданную предустановку.

Как это работает с использованием LM3915 IC

Функционирование схемы можно понять по следующим пунктам: IC LM3915, представляющая собой микросхему отображения напряжения точки / бара, образует основную часть схемы.

Микросхема имеет десять линейно увеличивающихся выходных сигналов, которые чередуются один за другим в ответ на растущий потенциал, подаваемый на его вывод № 5. Таким образом, выходная последовательность соответствует мгновенному уровню напряжения на выводе «входной сигнал» вне ИС.

Предварительная установка 10К, связанная с вышеуказанной ИС, устанавливается в соответствии с напряжением батареи, которое необходимо зарядить. После этого светодиоды, подключенные к выходу, линейно отображают уровень заряда батареи, загораясь последовательно, и, наконец, когда горит последний светодиод, который происходит, когда батарея полностью заряжается, запускается SCR, постоянно отключая процесс зарядки до тех пор, пока питание сбрасывается.

Стадия, содержащая ИС LM338, представляет собой стандартную ИС регулятора напряжения, предустановка, связанная с ИС, устанавливается в соответствии с требуемым пределом полного заряда подключенной батареи. Транзистор BC547 обеспечивает фиксированное напряжение 3 В для подключенных светодиодов для управления рассеиванием ИС.

Транзистор BC557 остается выключенным, пока последний светодиод в матрице, который может быть выбран для индикации полного заряда, не горит. Как только последний светодиод «полной зарядки» включается, BC557 также включается, вызывая SCR.

SCR мгновенно заземляет вывод ADJ LM338, полностью отключая IC и выход на батарею. Батарея теперь перестает получать какое-либо напряжение, и, таким образом, она перестает заряжаться.

Как настроить эту схему

Цепь может использоваться для зарядки батарей 1,5 В, 3 В, 6 В, 9 В, 12 В, 15 В, 18 В, 21 В и 24 В, фактически любое напряжение может находиться в диапазоне от 1 до 24 В. Предположим, что вы хотите зарядить батарею 6В, уровень полной зарядки для этой батареи будет 7В.

Настройка схемы может быть выполнена следующим образом:

  1. Не подключайте батарею изначально, а также держите затвор SCR отключенным от сети BC557. Применить относительно более высокий потенциал постоянного тока на входе микросхемы LM338, может быть вход 9В или 12В.
  2. Отрегулируйте предустановку 10K под LM338 так, чтобы клеммы аккумулятора получали выход 7В.
  3. Теперь отрегулируйте предустановку 10K под ИС LM3915 таким образом, чтобы последний светодиод просто мигал при этом напряжении, то есть при приложенном 7В.
  4. Восстановите соединение затвора SCR согласно электрической схеме. Вот и все, схема сейчас настроена.
  5. Во время процесса зарядки каждый светодиод будет соответствовать 7/10 = 0,7 вольт, то есть, скажем, при 5 В будет светиться 7-й светодиод, а при повышении на 0,7 В последующий светодиод будет гореть, и последовательность будет продолжаться от 7 до 8 до 9-го и, наконец, до 10-го светодиода, отключая цепь и зарядку аккумулятора.

В качестве альтернативы, если вы заинтересованы в том, чтобы схема реагировала на все батареи от 3 В до 12 В, вы можете отрегулировать предустановку LM3915 так, чтобы последний светодиод едва светился на 14.4В.

Теперь каждая распиновка ИС, соответствующая соответствующему светодиоду, будет работать со скоростью 14,4 / 10 = 1,4 В, поэтому для батареи 6 В полная схема вывода светодиодов будет 7 / 1,4 = 5, что означает, что 5-й светодиод будет гореть. означает, что подключенная батарея 6 В теперь полностью заряжена.

Для включения автоматического отключения в описанной выше ситуации вы просто должны убедиться, что основание BC557 подключено к 5-му выводу ИС LM3915 слева направо.

Для батареи 9 В это будет 9/1.4 = 6,4-й светодиод, то есть когда 6-й светодиод полностью светится, а 7-й светодиод едва мигает, можно выбрать 7-й светодиод и соединить его с базой BC557 для получения требуемого автоматического отключения.

Принципиальная схема

Использование защелки транзистора вместо SCR

Если вышеуказанная цепь не отвечает с помощью SCR, можно использовать следующую схему с защелкой транзистора:

Для Функция автоматического включения / выключения

Если вы хотите, чтобы вышеуказанная схема многоцелевого зарядного устройства отключала зарядное устройство, когда аккумулятор достигает предела полного изменения, а затем быстро включала зарядку, когда аккумулятор начинает опускаться ниже предела полного заряда, и продолжайте триггер на этом пороговом уровне, в этом случае вы можете попробовать изменить дизайн следующим образом:

О Swagatam

Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель ,Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и учебными пособиями.
Если у вас есть запрос, связанный со схемой, вы можете взаимодействовать через комментарии, я буду очень рад помочь!

Одна транзисторная схема автоматического зарядного устройства

Последнее обновление: от Swagatam

Эта схема с одним транзисторным дешевым зарядным устройством предназначена для автоматического отключения питания от аккумулятора, как только аккумулятор полностью зарядится уровень.

В этой статье описывается очень простая схема автоматического зарядного устройства с одним транзистором, в которой используется только один транзистор для определения напряжения, а также для автоматического отключения батареи от источника питания, когда она полностью заряжена.

Схема работы

Как показано на схеме, мы видим простую конфигурацию, в которой одиночный транзистор подключен в своем стандартном режиме работы. Функционирование схемы можно понять с помощью следующих пунктов:

Учитывая, что заряжаемая батарея является 12-вольтовой батареей, мы знаем, что рекомендуется заряжать батарею до тех пор, пока она не достигнет значения от 13,9 В до 14,3 Вольт.

Базовое напряжение транзистора регулируется с использованием предустановки P1, так что транзистор просто проводит и управляет реле при напряжении около 14 вольт.

Как настроить ограничение порогов

Эта регулировка становится точкой отключения по высокому напряжению в цепи и используется для отключения напряжения зарядки батареи, когда она полностью заряжается или ее напряжение достигает около 14 вольт.

Нижняя точка отключения цепи не может быть отрегулирована, так как эта схема слишком проста и не включает функцию обнаружения низкого напряжения.

Однако сам транзистор оснащен функцией выключения в случае, если его базовое напряжение становится слишком низким.

Обычно транзистор общего назначения, подобный тому, который показан (BC547) при настройке на включение при 14 В, может иметь нижний порог около 10 В, когда он может быть просто выключен.

Эта большая разность напряжений между высоким установленным порогом и нижним естественным порогом обусловлена ​​большим гистерезисом в конструкции. Это действует как естественный гистерезис в дизайне.

Нижний порог в 10 вольт опасно низок, и мы не можем ждать, пока схема перезапустит процесс зарядки, пока напряжение аккумулятора не упадет до этого опасного уровня в 10 вольт.

Если аккумулятор разрядится до 10 вольт, аккумулятор может разрядиться и сократить срок его службы. , Поэтому, чтобы устранить эту проблему, цепь должна была как-то снизить уровень гистерезиса. Это делается путем введения пары диодов на эмиттер транзистора.

Мы знаем, что обычно диоды 1N4007 будут падать примерно на 0,7 вольт и на два, если их общее значение составит 1,4 вольт. Вставив два диода последовательно с эмиттером транзистора, мы заставляем транзистор отключить 1.4 В раньше, чем его нормальный указанный предел 10 вольт.

Таким образом, теперь нижний рабочий порог цепи становится равным 10 + 1,4 = 11,4 В, что можно считать нормальным для батареи и для автоматического перезапуска процесса зарядки.

Обновив оба порога в соответствии со стандартными требованиями к зарядке, теперь у нас есть автоматическое автомобильное зарядное устройство, которое не только дешевое в сборке, но и достаточно умное, чтобы очень эффективно заботиться о состоянии заряда аккумулятора.

Принципиальная электрическая схема

Перечень запасных частей для предлагаемой одной транзисторной схемы автоматического зарядного устройства батареи

R1 = 4K7
P1 = предустановка 10K,
T1 = BC547B,
реле = 12 В, 400 Ом, SPDT,
TR1 = 0 — 14 В, ток 1/10 батареи AH
Мостовые диоды = равно номинальному току трансформатора
, эмиттеров
= 1N4007,
C1 = 100 мкФ / 25 В

Конструкция печатной платы
О Swagatam

Я инженер-электроник ( dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель.Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и учебными пособиями.
Если у вас есть запрос, связанный со схемой, вы можете взаимодействовать через комментарии, я буду очень рад помочь!

Принципиальная схема зарядного устройства для сотового телефона

Мобильные телефоны обычно заряжаются от 5 В постоянного тока с регулируемым напряжением питания , поэтому в основном мы собираемся создать 5 В постоянного тока с напряжением питания 220 В переменного тока. Этот источник постоянного тока можно использовать для зарядки мобильных телефонов, а также источника питания для цифровых цепей, макетов, микросхем, микроконтроллеров и т. Д.

Вы также можете построить 6 В постоянного тока, 9 В, 12 В, 15 В и т. Д., Используя соответствующий трансформатор, конденсатор и регулятор напряжения. Основная концепция остается прежней, вам просто нужно устроить радиатор для более высокого напряжения и тока.

Эта схема в основном состоит из понижающего трансформатора, двухполупериодного мостового выпрямителя и ИС регулятора напряжения 5 В (7805). Мы можем разделить эту схему на четыре части: (1) понижение напряжения переменного тока (2) выпрямление (3) фильтрация (4) регулирование напряжения.

1. Понизьте переменное напряжение

Поскольку мы преобразовываем 220 В переменного тока в 5 В постоянного тока, сначала нам нужен понижающий трансформатор для снижения такого высокого напряжения. Здесь мы использовали понижающий трансформатор 9-0-9 1А, который преобразует 220В переменного тока в 9В переменного тока.В трансформаторе имеются первичные и вторичные катушки, которые повышают или понижают напряжение в соответствии с числом витков в катушках.

Выбор правильного трансформатора очень важен. Номинальный ток зависит от требований к току Цепь нагрузки (цепь, которая будет использовать генератор постоянного тока). Номинальное напряжение должно быть больше необходимого напряжения. Это означает, что если нам нужно 5 В постоянного тока, трансформатор должен, по крайней мере, иметь номинал 7 В, потому что регулятор напряжения IC 7805, по крайней мере, должен на 2 В больше, т.е.е. 7В для обеспечения напряжения 5В.

2. Выпрямление

Выпрямление — это процесс удаления отрицательной части переменного тока (AC), что приводит к частичному постоянному току. Это может быть достигнуто с помощью 4 диодов. Диоды позволяют току течь только в одном направлении. В первом полупериоде переменного тока диоды D2 и D3 смещены в прямом направлении, а D1 и D4 смещены в обратном направлении, а во втором полупериоде (отрицательная половина) диоды D1 и D4 смещены в прямом направлении, а D2 и D3 смещены в обратном направлении.Эта комбинация превращает отрицательный полупериод в положительный.

full wave rectifier

На рынке доступен двухполупериодный мостовой выпрямительный компонент, который состоит из 4-х внутренних диодов. Здесь мы использовали этот компонент.

Full Wave Bridge Rectifier

3. Фильтрация

Выход после выпрямления не является надлежащим постоянным током, он является выходом колебаний и имеет очень высокий коэффициент пульсации. Нам не нужен этот пульсирующий выход, для этого мы используем конденсатор.Конденсатор заряжается до тех пор, пока форма волны не достигнет своего пика, и разрядится в цепь нагрузки, когда форма волны станет низкой. Таким образом, когда выходной сигнал становится низким, конденсатор поддерживает правильное напряжение в цепи нагрузки, тем самым создавая постоянный ток. Теперь, как следует рассчитать значение этого конденсатора фильтра. Вот формулы:

C = I * T / V

C = емкость для расчета

I = максимальный выходной ток (скажем, 500 мА)

т = 10 мс,

Мы получим волну частотой 100 Гц после преобразования 50 Гц переменного тока в постоянный ток через двухполупериодный мостовой выпрямитель.Поскольку отрицательная часть импульса преобразуется в положительную, один импульс будет считаться двумя. Таким образом, период времени будет 1/100 = 0,01 секунды = 10 мс

В = Пиковое напряжение — напряжение, подаваемое на ИС регулятора напряжения (+2 больше, чем номинальное значение 5 + 2 = 7)

9-0-9 — среднеквадратическое значение преобразований, поэтому пиковое напряжение Vrms * 1.414 = 9 * 1.414 = 12.73v

Теперь на 2 диода будет сброшено 1,4 В (0,7 на диод), так как 2 будут смещены в прямом направлении для полуволны.

Так 12,73 — 1,4 = 11,33 В

Когда конденсатор разряжается в цепи нагрузки, он должен обеспечивать 7 В до 7805 микросхем для работы, поэтому, наконец, V равно:

V = 11.33 — 7 = 4,33 В

Итак, теперь C = I * T / V

C = 500 мА * 10 мс / 4,33 = .5 * .01 / 4,33 = 1154 мкФ ~ 1000 мкФ

filteration

4. Регулирование напряжения

Регулятор напряжения IC 7805 используется для обеспечения регулируемого напряжения 5 В постоянного тока. Входное напряжение должно быть на 2 Вольт выше номинального выходного напряжения для правильной работы микросхемы. Это означает, что необходимо минимум 7 В, хотя он может работать в диапазоне входного напряжения 7-20 В. Регуляторы напряжения имеют всю электрическую схему внутри, чтобы обеспечить должное регулирование постоянного тока.Конденсатор 0,01 мкФ должен быть подключен к выходу 7805 для устранения шума, вызванного переходными изменениями напряжения.

regulation

Вот полная схема для схемы зарядного устройства сотового телефона :

Вы должны быть очень осторожны при построении этой схемы, так как здесь используется сеть переменного тока 220В.

,

Отправить ответ

avatar
  Подписаться  
Уведомление о