Attiny13 измерение напряжения: 403 — Доступ запрещён – 403 — Доступ запрещён

Микроконтроллеры и Технологии — АмперВольтметр на attiny13

Дата публикации: .

АмперВольтметр на attiny13Этот проект возник из любопытства – что мы можем сделать на таком маленьком микроконтроллере? Оказывается, много чего. В этом проекте микроконтроллер будет измерять напряжение, ток и температуру, пересчитывать их и выводить на ЖК дисплей формата 16×1. Несмотря на необычные решения, и несколько недостатков, его также можно использовать как измеритель напряжения питания. Размеры печатной платы составляют 35 × 16 мм.

Дисплей использует 6 контактов, поэтому вывод RESET придется сконфигурировать как обычный порт ввода/вывода. Это следует делать ПОСЛЕ программирования. Измерение напряжения осуществляется с помощью резистивного делителя. Измерения в диапазоне от 0 до 99.9 В выполняются с точностью 0.1 В. Ток измеряется путем измерения падения напряжения на шунтирующем резисторе сопротивлением 0.1 Ом. Диапазон измерения составляет от 0 до 9.99 А, точность 0.01 А. Температура измеряется с помощью аналогового датчика LM35 в диапазоне от 0 до 99.9 °С с точностью 0.01 °С. В качестве о напряжения для АЦП используется внутренний источник опорного напряжения микроконтроллера ATtiny13, его напряжение составляет 1.1 В. Таким образом, для измерения тока нам не придется использовать операционный усилитель (и отрицательное напряжение питания для него), а вычисления становятся гораздо проще.

АмперВольтметр на attiny13 - схема

 

Такому простому устройству свойственны небольшие недостатки. Измерение происходит на тех же самых выводах, по которым передаются данные для ЖК-дисплея, а выводам дисплея требуется ток около 80 мкА, чтобы подтянуть их к земле. Резистор сопротивлением 100 Ом в резистивном делителе плохо справляется с этой функцией, и на нем остается около 7 мВ относительно земли. Эти 7 мВ просто вычитаются из результата измерений, из за чего возникает погрешность и результат измерений получается нелинейным. Эта погрешность наиболее сильно проявляется в диапазоне измеряемых напряжений от 0 до 5 В.

Помните, что для измерения больших токов и напряжений мощности шунтирующего и добавочного резисторов должны быть соответствующими. Устройство калибруется с помощью двух подстроечных потенциометров. Контраст ЖК дисплея не регулируется, он задан с помощью двух резисторов, получаемое напряжение равно приблизительно 1 В. Большинство ЖК дисплеев хорошо работают с этим напряжением, но при желании вы можете установить свое значение. Ток измеряется относительно шины земли. Земля источника питания соединяется с землей на плате. Шунтирующий резистор подключается между землей (на схеме GND) и входом -V. Если вы захотите запитать это устройство от источника измеряемого напряжения, просто подключите вход стабилизатора напряжения ко входу +V. Не забывайте, что максимальное напряжение, которое вы можете подать на вход стабилизатора 7805, составляет 30 В. Таким образом, если вы захотите измерять более высокие напряжения или измерять напряжение в диапазоне от 0 В, понадобится отдельный источник питания для устройства. В этом случае перережьте дорожку под потенциометром калибровки напряжения, измеряемое напряжение подключите к контакту +V, а затем подключите источник питания к контакту ZAS на плате.

Плата спроектирована так, чтобы разместить на ней стабилизатор 7805 в корпусе TO252, но на ней можно без проблем поставить микросхему 78L05 в корпусе TO92. Общий ток, потребляемый устройством, включая подсветку ЖК-дисплея, составляет около 30 мА, так что стабилизатора 78L05 вполне хватит.

Диапазон измеряемых напряжений : 0 — 99 Вольт, с дискретностью 0,1 Вольт

Диапазон измеряемого тока : 0 — 9,9 Ампер (С шунтом 0,1 Ом)

Диапазон измеряемых температур : 0 — 99° С, с дискретностью 0,1° С

Программирование: порт сброса (reset) микроконтроллера должен быть запрограммирован как обычный порт (fuse RSTDISBL). Внимание! При установке бита RSTDISBL=0, дальнейшее программирование микроконтроллера с помощью ISP будет невозможным. Восстановить заводскую конфигурацию микроконтроллера можно с помощью этого устройства. Остальные FUSE — биты по умолчанию.

В архив добавлен файл tiny13lcd_9_64-sample, это обновленная версия программы для микроконтроллера, производящая 64 измерения и отображающая их среднее значение.

Источник: elektroda.eu


Архив для статьи «АмперВольтметр на attiny13»
Описание:
Размер файла: 74.18 KB Количество загрузок: 5 584 Скачать

Трёхканальный UART АЦП на ATtiny13 / Habr

Привет хабр. Я уже давно вынашивал сделать UART Аналогового-Цифрового Преобразователя на ATtiny13, зачем делать именно на ATtiny13 ведь есть, к примеру, ATmega8 имеет аж 6 (для DIP корпуса) портов на которых, при помощи мультиплексора, можно проводить измерение АЦП?

Причин несколько:

— ATtiny13 стоит дешевле;
— В ATtiny13 более оптимально используются ресурсы микроконтроллера;
— Размеры;
— Энергопотребление;
— Просто мне так захотелось.

Конечно на мои аргументы можно найти множество контраргументов, например ATmega8 при использовании V-USB может превратится в плату ввода/вывода которой не нужен переходник с UART на USB, правда кроме последнего, и с этим пожалуй не поспоришь.

Поставил себе за цель получить опыт работы с программный UART’ом именно на ATtiny13, а опыт как говорится, бесценный. По-любому пригодится для будущих проектов.
Ну ладно, не буду тянуть и покажу, как работает в железе:

Пару слов по схеме, кстати, вот она:

Схема в Proteus

Скажу сразу, что не плохо бы уделить внимание фильтру питания, у меня это два конденсатора C1 — желательно «керамика» и как можно ближе к ножкам МК, ну и C2 — электролитический, второй можно поставить на 100 мкФ но у меня такого не оказалось под рукой, нашёл на 470 мкФ 10 В. Так же было бы не плохо по конденсатору на каждый порт АЦП, и как можно ближе к МК. R1 не принципиален, но по правилах «хорошего тона» — должен присутствовать.

Данные, как Вы могли видеть, приходят в формате 1023,666,10, ну хоть бери и сохраняй в формате CSV на компе или же другом устройстве, которое будет принимать эти данные.
Кстати принимает данные в моём случае недорогой преобразователь USB — UART основан на микросхеме PL2303HX. Пробовал питать ATtiny13 от бортовых 3.3 В что на преобразователе, по мультиметру к стати 3.4 В, работает, я поначалу думал что изменение питания на такое высокое значение как-то скажется на отправке данных, я где-то читал страшилку мол, нагрей на пару градусов, охлади и всё, прощай адекватные данные… Ничего подобного, охлаждал льдом, слегка грел зажигалкой(без фанатизма) — всё работает нормально, потерь не наблюдал.

Пару слов про код — код написан в среде BASCOM-AVR на Basic’е, вот предлагаю Вашему вниманию мой код на написание я потратил около чем 4-5 часов, так как я раньше не встречался с Basic’ом, но это время было потрачено не только на написание кода но и на то, чтобы разобраться с особенностями BASCOM-AVR, отладка и всякое такое.

Код
Samples Alias 64                                            ' Аналог директивы #define на Си
                                                                        ' Количество выборок АЦП 
$regfile = "attiny13.dat"                                   ' Конфигурации по умолчанию
$crystal = 1200000
$hwstack = 16
$swstack = 16
$framesize = 16
'$noramclear

Open "comb.0:9600,8,n,1" For Output As #1                   ' Настройка программного UART, скорость 9600 бод
                                                              ' Ножка PB0 будет как TXD, подключаем к RXD преобразователя

Config Adc = Single , Prescaler = Auto , Reference = Avcc   'Конфигурирование  АЦП, измерение относительно Vcc
Start Adc                                                   ' Запускаем преобразование

' Здесь Adc - режим считывания значения: Single - единичное считывание,
' также может быть Free (режим постоянной работы преобразователя)
' Prescaler = 128 - выбираем частоту дискретизации путем деления
' частоты кварца на определенное число (также может быть 2,4,8,16,32,64 или Auto).
' Если выбрать Auto, то компилятор сам выберет подходящую частоту работы АЦП
' Reference – выбор источника опорного напряжения. Aref – внешний источник,
' Avcc – напряжение питания схемы, Internal – внутренний ИОН на 1,1 в.

Declare Function Adc_get(byval Adc_port As Byte) As Word    ' Объявим переменную которая принимает номер нужного порта АЦП
                                                              ' И возвращает усреднённое от "Samples" количество выборок АЦП

Do                                                          ' Тут начинается вечный цикл

   Print #1 , Adc_get(1) ; "," ; Adc_get(2) ; "," ; Adc_get(3)       ' Выводим данные в формате *,*,*

Loop                                                        ' Тут кончается

Function Adc_get(byval Adc_port As Byte ) As Word           ' Переменная типа Word может принимать знач. до 65535

   Dim Temp_result As Word                                  ' Создадим переменную для буфера
   Dim Adc_cycles As Byte                                   ' И счётчик выборок АЦП

   Temp_result = 0

   For Adc_cycles = 1 To Samples

      Temp_result = Temp_result + Getadc(adc_port)

   Next

   Temp_result = Temp_result / Samples

   Adc_get = Temp_result                                    ' Эта функция возвращает Temp_result

End Function


Что делает данные код — по началу создаётся программный UART, тут это делается очень просто, задаём нужные параметры, порт, скорость и прочее, потом осуществляется конфигурация АЦП, объявление функции, ну это понятно, потом формируется строчка и результатами усреднённого числа от Samples выборок АЦП. Почему я выбрал именно 64 а не к примеру 42 или 108? Ну потому что 1023 * 64 это равно 65 472, а для типа Word, который я использовал для буфера максимальное значение которое переменная может принять — 65 535, это число является наибольшим числом, представимом в виде двухбайтного слова без знака, если добавить ещё одну выборку переменная попросту обнулится если АЦП возвратит 1023. С типом Long почему-то возникали проблемы, да лично мне и 64 выборки хватает, ниже я покажу как это работает на графике. Ну и потом в UART выводятся результаты.

Как Вы можете видеть шум конечно присутствует, даже не смотря на то что выводится усреднённое значение из 64 выборок, судя по даташиту шум в ± 2 LSB — норма, у меня же шум 1 LSB.

Скрин софта

Как Вы можете видеть, ATtiny13 отправляет значения 15-16 раз за секунду, что я считаю не плохо учитывая что это программный UART да и тиня делает по 64 измерения на порт, а их причём три.

МК потребляет следующий ток:

Питание 5 В — 2.71 мА
Питание 3.3 В 1.75 мА

Пару слов о программированию — как я сказал на видео, частота МК 1.2 МГц, все фьюзы по умолчанию, как в моём предыдущем топике Музыкальный дверной звонок в стиле Star Wars.

Вот фьюзы из калькулятора фьюзов:

Фьюзы

Ну и под конец пару фоток из разных ракурсов:

Небольшая фотосессия


Ссылки:

Альтернатива Wiring для Arduino — BASCOM-AVR
Софт которым делал графики — Serial oscilloscope
Архив с исходником, хекс-файлом и схемой в Proteus 7 Professional
Все мои публикации.

Микроконтроллеры и Технологии — АмперВольтметр на attiny13

Дата публикации: .

АмперВольтметр на attiny13Этот проект возник из любопытства – что мы можем сделать на таком маленьком микроконтроллере? Оказывается, много чего. В этом проекте микроконтроллер будет измерять напряжение, ток и температуру, пересчитывать их и выводить на ЖК дисплей формата 16×1. Несмотря на необычные решения, и несколько недостатков, его также можно использовать как измеритель напряжения питания. Размеры печатной платы составляют 35 × 16 мм.

Дисплей использует 6 контактов, поэтому вывод RESET придется сконфигурировать как обычный порт ввода/вывода. Это следует делать ПОСЛЕ программирования. Измерение напряжения осуществляется с помощью резистивного делителя. Измерения в диапазоне от 0 до 99.9 В выполняются с точностью 0.1 В. Ток измеряется путем измерения падения напряжения на шунтирующем резисторе сопротивлением 0.1 Ом. Диапазон измерения составляет от 0 до 9.99 А, точность 0.01 А. Температура измеряется с помощью аналогового датчика LM35 в диапазоне от 0 до 99.9 °С с точностью 0.01 °С. В качестве о напряжения для АЦП используется внутренний источник опорного напряжения микроконтроллера ATtiny13, его напряжение составляет 1.1 В. Таким образом, для измерения тока нам не придется использовать операционный усилитель (и отрицательное напряжение питания для него), а вычисления становятся гораздо проще.

АмперВольтметр на attiny13 - схема

 

Такому простому устройству свойственны небольшие недостатки. Измерение происходит на тех же самых выводах, по которым передаются данные для ЖК-дисплея, а выводам дисплея требуется ток около 80 мкА, чтобы подтянуть их к земле. Резистор сопротивлением 100 Ом в резистивном делителе плохо справляется с этой функцией, и на нем остается около 7 мВ относительно земли. Эти 7 мВ просто вычитаются из результата измерений, из за чего возникает погрешность и результат измерений получается нелинейным. Эта погрешность наиболее сильно проявляется в диапазоне измеряемых напряжений от 0 до 5 В.

Помните, что для измерения больших токов и напряжений мощности шунтирующего и добавочного резисторов должны быть соответствующими. Устройство калибруется с помощью двух подстроечных потенциометров. Контраст ЖК дисплея не регулируется, он задан с помощью двух резисторов, получаемое напряжение равно приблизительно 1 В. Большинство ЖК дисплеев хорошо работают с этим напряжением, но при желании вы можете установить свое значение. Ток измеряется относительно шины земли. Земля источника питания соединяется с землей на плате. Шунтирующий резистор подключается между землей (на схеме GND) и входом -V. Если вы захотите запитать это устройство от источника измеряемого напряжения, просто подключите вход стабилизатора напряжения ко входу +V. Не забывайте, что максимальное напряжение, которое вы можете подать на вход стабилизатора 7805, составляет 30 В. Таким образом, если вы захотите измерять более высокие напряжения или измерять напряжение в диапазоне от 0 В, понадобится отдельный источник питания для устройства. В этом случае перережьте дорожку под потенциометром калибровки напряжения, измеряемое напряжение подключите к контакту +V, а затем подключите источник питания к контакту ZAS на плате.

Плата спроектирована так, чтобы разместить на ней стабилизатор 7805 в корпусе TO252, но на ней можно без проблем поставить микросхему 78L05 в корпусе TO92. Общий ток, потребляемый устройством, включая подсветку ЖК-дисплея, составляет около 30 мА, так что стабилизатора 78L05 вполне хватит.

Диапазон измеряемых напряжений : 0 — 99 Вольт, с дискретностью 0,1 Вольт

Диапазон измеряемого тока : 0 — 9,9 Ампер (С шунтом 0,1 Ом)

Диапазон измеряемых температур : 0 — 99° С, с дискретностью 0,1° С

Программирование: порт сброса (reset) микроконтроллера должен быть запрограммирован как обычный порт (fuse RSTDISBL). Внимание! При установке бита RSTDISBL=0, дальнейшее программирование микроконтроллера с помощью ISP будет невозможным. Восстановить заводскую конфигурацию микроконтроллера можно с помощью этого устройства. Остальные FUSE — биты по умолчанию.

В архив добавлен файл tiny13lcd_9_64-sample, это обновленная версия программы для микроконтроллера, производящая 64 измерения и отображающая их среднее значение.

Источник: elektroda.eu


Архив для статьи «АмперВольтметр на attiny13»
Описание:
Размер файла: 74.18 KB Количество загрузок: 5 584 Скачать

Собери свою радиосхему!

Устройство предназначено для контроля за напряжением на аккумуляторе 12вольт, путем изменения прошивки аккумулятор может быть применен на любое напряжение: 1.2 вольт, 3.7 вольт, 6 вольт и т.п. Чтобы изменять параметры измерения не объязательно копаться в прошивке, проще повозиться с резисторным делителем — подобрать сопротивления.

Схема индикатора:

Схема основана на микроконтроллере Attiny13, в качестве индикаторов использованы 3 светодиода. Алгоритм работы программы я думаю понятен и обьяснять не буду. В кратце: При достижении определенного значения напряжения на аккумулятора загорается определенный светодиод (тухнет, если напряжения уменьшается). Если напряжение упало до 11.8 вольт, загорается последний светодиод D3 (остается гореть из всех трех), а если же напряжение опустится ниже чем 11.8-11.6 то данный же светодиод (D3) начнет мигать, оповещая о критически низком напряжении на АКБ. 



$regfile = «attiny13.dat» ‘ используем ATmega16
$crystal = 100000

Config Adc = Single , Prescaler = Auto , Reference = Avcc
Config Portb.0 = Output
Config Portb.1 = Output
Config Portb.2 = Output

Start Adc
Do
If Getadc(2) >= 805 Then
Portb.0 = 1
Else
Portb.0 = 0
End If
If Getadc(2) >= 845 Then
Portb.1 = 1
Else
Portb.1 = 0
End If
If Getadc(2) >= 890 Then
Portb.2 = 1
Else
Portb.2 = 0
End If

If Getadc(2) <= 805 Then
Toggle Portb.0
Waitms 100
Reset Portb.0
Waitms 500
End If
Loop
Return

End

Исходник и проект в протеусе имеется ниже в архиве, исходниккак всегда в BASCOM AVR.

файлы проекта (~6кб.)



АмперВольтметр на attiny13 — Готовые устройства — Каталог статей — Микроконтроллеры

Этот проект возник из любопытства – что мы можем сделать на таком маленьком микроконтроллере? Оказывается, много чего. В этом проекте микроконтроллер будет измерять напряжение, ток и температуру, пересчитывать их и выводить на ЖК дисплей формата 16×1. Несмотря на необычные решения, и несколько недостатков, его также можно использовать как измеритель напряжения питания. Размеры печатной платы составляют 35 х 16 мм.


Дисплей использует 6 контактов, поэтому вывод RESET придется сконфигурировать как обычный порт ввода/вывода. Это следует делать ПОСЛЕ программирования. Измерение напряжения осуществляется с помощью резистивного делителя. Измерения в диапазоне от 0 до 99.9 В выполняются с точностью 0.1 В. Ток измеряется путем измерения падения напряжения на шунтирующем резисторе сопротивлением 0.1 Ом. Диапазон измерения составляет от 0 до 9.99 А, точность 0.01 А. Температура измеряется с помощью аналогового датчика LM35 в диапазоне от 0 до 99.9 °С с точностью 0.01 °С. В качестве о напряжения для АЦП используется внутренний источник опорного напряжения микроконтроллера ATtiny13, его напряжение составляет 1.1 В. Таким образом, для измерения тока нам не придется использовать операционный усилитель (и отрицательное напряжение питания для него), а вычисления становятся гораздо проще.


АмперВольтметр на attiny13 — схема

 

Такому простому устройству свойственны небольшие недостатки. Измерение происходит на тех же самых выводах, по которым передаются данные для ЖК-дисплея, а выводам дисплея требуется ток около 80 мкА, чтобы подтянуть их к земле. Резистор сопротивлением 100 Ом в резистивном делителе плохо справляется с этой функцией, и на нем остается около 7 мВ относительно земли. Эти 7 мВ просто вычитаются из результата измерений, из за чего возникает погрешность и результат измерений получается нелинейным. Эта погрешность наиболее сильно проявляется в диапазоне измеряемых напряжений от 0 до 5 В.

Помните, что для измерения больших токов и напряжений мощности шунтирующего и добавочного резисторов должны быть соответствующими. Устройство калибруется с помощью двух подстроечных потенциометров. Контраст ЖК дисплея не регулируется, он задан с помощью двух резисторов, получаемое напряжение равно приблизительно 1 В. Большинство ЖК дисплеев хорошо работают с этим напряжением, но при желании вы можете установить свое значение. Ток измеряется относительно шины земли. Земля источника питания соединяется с землей на плате. Шунтирующий резистор подключается между землей (на схеме GND) и входом -V. Если вы захотите запитать это устройство от источника измеряемого напряжения, просто подключите вход стабилизатора напряжения ко входу +V. Не забывайте, что максимальное напряжение, которое вы можете подать на вход стабилизатора 7805, составляет 30 В. Таким образом, если вы захотите измерять более высокие напряжения или измерять напряжение в диапазоне от 0 В, понадобится отдельный источник питания для устройства. В этом случае перережьте дорожку под потенциометром калибровки напряжения, измеряемое напряжение подключите к контакту +V, а затем подключите источник питания к контакту ZAS на плате.

Плата спроектирована так, чтобы разместить на ней стабилизатор 7805 в корпусе TO252, но на ней можно без проблем поставить микросхему 78L05 в корпусе TO92. Общий ток, потребляемый устройством, включая подсветку ЖК-дисплея, составляет около 30 мА, так что стабилизатора 78L05 вполне хватит.

Диапазон измеряемых напряжений : 0 — 99 Вольт, с дискретностью 0,1 Вольт

Диапазон измеряемого тока : 0 — 9,9 Ампер (С шунтом 0,1 Ом)

Диапазон измеряемых температур : 0 — 99° С, с дискретностью 0,1° С

Программирование: порт сброса (reset) микроконтроллера должен быть запрограммирован как обычный порт (fuse RSTDISBL). Внимание! При установке бита RSTDISBL=0, дальнейшее программирование микроконтроллера с помощью ISP будет невозможным. Восстановить заводскую конфигурацию микроконтроллера можно с помощью этого устройства. Остальные FUSE — биты по умолчанию.

В архив добавлен файл tiny13lcd_9_64-sample, это обновленная версия программы для микроконтроллера, производящая 64 измерения и отображающая их среднее значение.

Простой счетчик витков на Attiny13a

РадиоКот >Схемы >Цифровые устройства >Автоматика >

Простой счетчик витков на Attiny13a

Пришлось недавно мотать трансформаторы с большим количеством витков — работа даже чем-то приятная, но вот со счёта я всё время сбиваюсь. Обычные решения вроде калькулятора с герконом на знаке «равно» не устраивали — за отсутствием того самого калькулятора, да и не эстетично это как-то. Как и не эстетично использовать для этих целей Атмеги, Ардуины и более высокие контроллеры. Готовых схем в интернете не нашлось, а если и были, то сопровождались десятками деталей и бородой из проводов. Пришлось придумывать самому, ибо не может столь простое устройство требовать столь сложной схемы.

Из подходящих деталей нашeл контроллеры Attiny13a, светодиодный семисегментный дисплей на «драйвере» из шифт-регистров, аккумулятор от сотового телефона, а также пары светодиод-фототранзистор, которые раньше служили датчиками уровня краски струйного принтера.

 

 

 

 

 

 

 

Дисплеи такого типа продаются с уже распаянной платой на два восьмибитных шифт-регистра 74HC595, и стоят ненамного дороже чем просто семисегментные дисплеи. Основной их плюс в том, что можно обойтись всего тремя портами ввода данных: DIO, CKL и RCK. А портов как известно на Attiny13a совсем немного — всего три на дисплей и два на датчики. Также отпадает надобность в четырёх транзисторах, что ставятся при использовании обычной динамической индикации, требующей целых 7+4 портов микроконтроллера.

 

 

 

 

 

 

 

Датчиками служат две пары светодиод-фототранзистор (например ITR9608), расположенные рядом друг с другом. В данном случае они используются как эмиттерные повторители, притягивая каждый свой порт на высокий уровень, когда фототранзистор принимает свет. В принципе, можно обойтись и одним датчиком (естественно, изменив прошивку), но тогда счетчик не будет «видеть» в какую сторону вы вращаете вал. А это неудобно, если приходится отматывать и переукладывать витки.

Вращая вал намоточного станка мы вращаем также диск с прорезью, находящийся между светодиодами и фототранзисторами, таким образом периодически прерывая световые лучи. Прорезь должна быть достаточно широкой чтобы одновременно пропускать свет на оба фототранзистора. Подробности работы программы можно понять из исходников, которые я постарался получше комментировать. Прошивку делал используя USBASP-программатор под линуксом, при компиляции исходников надо указать стандарт c99. Исходники прилагаются, так как я исповедую «Open Source».

Схема всего счетчика представлена ниже. Изначально в схеме предполагалось использовать кнопку сброса, но затем я понял что она по сути не нужна — можно просто щелкнуть туда-сюда выключателем.

Печатную плату рисуем в вашей любимой программе, или берём готовую в случае если нашли такие же детали как у меня. Я не стал заморачиваться с ЛУТ — в основном по причине отсутствия рабочего утюга. Просто накернил места отверстий, нарисовал дорожки специальным маркером и вытравил плату, использовав тот самый состав из перекиси водорода + соли + лимонной кислоты. Облудив и распаяв детали, можно проверить работу схемы.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Далее кончается электроника и начинается механика — тут уже дело вкуса и пристрастий. Кто-то может прикрутить электропривод, мне же нравится крутить вручную. Это удобнее когда провод очень тонкий и легко рвётся — рука лучше чувствует натяжение.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Устройство готово, инспектора довольны 🙂

Файлы:
Прошивка микроконтроллера
Печатная плата
Исходники программы на «СИ»

Все вопросы в Форум.


Как вам эта статья?

Заработало ли это устройство у вас?

Отправить ответ

avatar
  Подписаться  
Уведомление о