Калькулятор онлайн для расчета резистора для: Он-лайн калькуляторы для радиолюбителя – Калькулятор цветовой маркировки резисторов

Содержание

Калькулятор параллельных сопротивлений • Электротехнические и радиотехнические калькуляторы • Онлайн-конвертеры единиц измерения

Scheme

Калькулятор определяет сопротивление нескольких параллельно соединенных резисторов.

Пример. Рассчитать эквивалентное сопротивление двух резисторов 20 Ом and 30 Ом, соединенных параллельно.

Входные данные

Добавить резистор

Выходные данные

Эквивалентное сопротивление

R ом (Ом)

Введите величины сопротивлений в поля R1, R2 и т.д., добавляя при необходимости нужное количество полей для ввода, выберите единицы сопротивления в миллиомах (мОм), омах (Ом), килоомах (кОм) или мегаомах (МОм) и нажмите кнопку Рассчитать.

1 мОм = 0,001 Ом. 1 кОм = 1 000 = 10³ Ом. 1 МОм = 1 000 000 = 10⁶ Ом.

Эквивалентное сопротивление Req группы параллельно соединенных резисторов является величиной, обратной сумме величин, обратно пропорциональных сопротивлениям этих резисторов.

Formula

или

Formula

Иными словами, проводимость G параллельно соединенных резисторов равна сумме проводимостей этих резисторов:

Formula

Эта формула для Req и используется в данном калькуляторе для расчетов. Например, общее сопротивление трех резисторов 10, 15 и 20 ом, соединенных параллельно, равно 4.62 Ом:

Formula

Если параллельно соединены только два резистора, формула упрощается:

Formula

или

Formula

Если имеется n соединенных параллельно одинаковых резисторов R, то их эквивалентное сопротивление будет равно

Formula

Отметим, что общее сопротивление группы из любого количества соединенных параллельно резисторов всегда будет меньше, чем наименьшее сопротивление резистора в группе и добавление нового резистора всегда приведет к уменьшению эквивалентного сопротивления.

Отметим также, что все резисторы, соединенные параллельно находятся под одним и тем же напряжением. Однако токи, протекающие через отдельные резисторы, отличаются и зависят от их сопротивления. Общий ток через группу резисторов равен сумме токов в отдельных резисторах.

При соединении нескольких резисторов параллельно всегда нужно учитывать их допуски и рассеиваемую мощность.

Различные постоянные и переменные резисторы

Различные постоянные и переменные резисторы

Примеры применения параллельного соединения резисторов

Одним из примеров параллельного соединения резисторов является шунт в приборе для измерения токов, которые слишком велики для того, чтобы быть напрямую измеренными прибором, предназначенным для измерения небольших токов или напряжений. Для измерения тока параллельно гальванометру или электронному прибору, измеряющему напряжение, подключается резистор с очень маленьким точно известным сопротивлением, изготовленный из материала со стабильными характеристиками. Этот резистор называется шунтом. Измеряемый ток протекает через шунт. В результате на нем падает небольшое напряжение, которое и измеряется вольтметром. Поскольку падение напряжения пропорционально току, протекающему через шунт с известным и точным сопротивлением, вольтметр, подключенный параллельно шунту, можно проградуировать непосредственно в единицах тока (амперах).

Установленный в мультиметре шунт для измерения ток до 20 ампер. Отметим, что если этим мультиметром измеряется большой ток непрерывно более 10 секунд, шунт перегреется и его сопротивление изменится, что приведет к ошибке измерения

Установленный в мультиметре шунт для измерения ток до 20 ампер. Отметим, что если этим мультиметром измеряется большой ток непрерывно более 10 секунд, шунт перегреется и его сопротивление изменится, что приведет к ошибке измерения

Параллельные и последовательные схемы часто используются для получения точного сопротивления или если резистора с требуемым сопротивлением нет или он слишком дорог, если его приобретать в небольших количествах для массового производства. Например, если устройство содержит много резисторов по 20 кОм и необходим только один резистор 10 кОм. Конечно, несложно найти резистор на 10 кОм. Однако для массового производства иногда бывает лучше поставить два резистора на 20 кОм параллельно, чтобы получить необходимые 10 кОм. Это приведет к снижению себестоимости печатной платы, так как будет снижена оптовая цена компонентов, а также стоимость монтажа, так как будет уменьшено количество типоразмеров элементов, которые должен установить на плату автомат установки компонентов.

Резисторы поверхностного монтажа на печатной плате

Резисторы поверхностного монтажа на печатной плате

Онлайн калькулятор расчета резистора светодиода

 
 

 

Не смотря на то, что всевозможные светодиоды сегодня используются практически во всех сферах жизни человека, среднестатистический потребитель, как правило, не задумывается о том, как и по каким законам они работают. И если такой человек сталкивается, к примеру, с необходимостью организации светодиодного освещения,  у него возникает множество проблем и вопросов. И одним из наиболее распространенных вопросов является «что такое резисторы и зачем они нужны светодиоду?». Попробуем на этот вопрос ответить.

Резистор представляет собой элемент электрической сети, отличающийся пассивностью, который, в идеальном варианте, характеризуется исключительно своим сопротивлением электрическому току (то есть, в любой момент времени для него должен выполняться закон Ома). Основное назначение резистора – оказание активного сопротивления электрическому току, и сегодня такие элементы широко используются в организации искусственного освещения.

Теперь поговорим о том, зачем резистор необходим непосредственно светодиоду.

Многие из нас знают, что обыкновенная стандартная лампочка горит, если ее подключить напрямую к некоторому источнику питания. Она успешно функционирует и сгорает только в том случае, если из-за переизбытка напряжения происходит перегрев нити накала. Однако практически никто при этом не задумывается, что в данном случае лампочка сама выполняет роль резистора – ток через нее проходит с трудом, и тем легче ему преодолеть это препятствие, чем выше напряжение. И конечно, приравнивать такой сложный полупроводниковый прибор, как светодиод, к обыкновенной лампе накаливания никак невозможно.

Важно учитывать, что светодиод представляет собой токовый прибор, который, грубо говоря, в процессе работы выбирает для себя напряжение, а не силу тока. Таким образом, если светодиод, к примеру, выбирает напряжение 1,8V, а на него подается 1,9V, то он, скорее всего, сгорит (если, конечно, не сможет понизить напряжение источника до нужного ему значения). И для того чтобы этого не произошло, нужен резистор. Он стабилизирует используемый источник питания, чтобы его напряжение не испортило светодиод.

В связи с этим чрезвычайно важно разобраться, какой именно резистор необходим для того или иного светодиода, и нужно ли для каждого светодиода использовать отдельный резистор. Здесь немаловажно учитывать схему соединения, а также количество используемых светодиодов. Если речь идет, к примеру, о последовательной цепочке светодиодов, в которой они расположены друг за другом, то поскольку электрический ток в каждой точке данной цепи протекает один и тот же, для этих светодиодов будет достаточно только одного резистора с правильно рассчитанным сопротивлением.

Но если мы говорим о параллельном включении светодиодов, здесь каждый из них должен обладать собственным резистором, поскольку в противном случае все напряжение потянет так называемый «лимитирующий» светодиод (тот, которому напряжение нужно наименьшее). Он быстро перегорит, и теперь напряжение перейдет к следующему светодиоду, который также выйдет из строя. Это недопустимо, а значит, для параллельно подключенных светодиодов просто необходимо использовать достаточное количество правильно подобранных резисторов.

Теперь поговорим о том, как нужно осуществлять расчет сопротивления резистора, предназначенного для того или иного светодиода. Чаще всего осуществляется такой расчет с помощью специальных калькуляторов. И именно такой высокоэффективный онлайн калькулятор мы предлагаем нашим клиентам. Данный калькулятор позволяет рассчитать значение сопротивления и мощности резистора в цепи светодиодов. Для того чтобы рассчитать необходимое значение, вам следует ввести напряжение питания светодиода, номинальное напряжение светодиода, номинальный ток и выбрать схему соединения и количество светодиодов. Благодаря нашему калькулятору, вы сможете быстро получить достаточно точные сведения, способные оказать гарантированную помощь в организации искусственного освещения.

Кроме того, приступая к процессу расчета сопротивления резистора, необходимо учитывать несколько важных моментов. Во-первых, помните, что на светодиодах, как правило, пишут не напряжение питания, а напряжение падения (то есть то, которое они выбирают для себя), да и оно указывается приблизительно. Используется это число исключительно для определения минимального напряжения или для расчета резистора питания. То есть напряжение падения светодиода нужно отнимать от напряжения его питания, и мы получим напряжение на резисторе.

Ток же, протекающий через него, рассчитывается обычно делением оставшегося на резисторе напряжения на его сопротивление. Ну а для расчета сопротивления данного резистора, соответственно, оставшееся напряжение делится на ту величину тока, которая нам нужна. Человеку, далекому от электрики и физики, самостоятельно сделать расчеты практически невозможно. Поэтому вы еще раз можете оценить удобство и функциональность нашего онлайн калькулятора, который с легкостью выполнит подобную работу за вас.


Онлайн-калькулятор номиналов сопротивления DIP и SMD резисторов

Онлайн-калькулятор маркировки SMD резисторов


Представляем простой и удобный калькулятор сопротивлений SMD резисторов. Чтобы узнать номинал своего резистора, введите его код в черное поле:

Наш калькулятор позволяет определять сопротивление SMD резисторов, маркированных по стандарту EIA-96, по которому на корпус наносится 3 или 4 цифры, либо 2 цифры и 1 буква.

Обозначения маркировок SMD резисторов


При использовании маркировки с тремя или четырьмя цифрами, первые 2 или 3 из которых обозначают количественное значение сопротивления резистора, а последняя — показатель множителя. Множитель равен степени, в которую необходимо возвести количество, чтобы получить итоговый номинал.

Приведем нескольлко примеров определения номинала SMD резистора, исходя из его маркировки:

  • 473 = 47kΩ ± 5%
  • 103 = 10kΩ ± 5%
  • 312 = 3.1kΩ ± 5%
  • 106 = 10MΩ ± 5%

При маркировке сопротивлений менее 10Ω используется Буква

R. Она указывает на положене десятичной точки деления:

  • 0R5 = 0.5Ω
  • 0R3 = 0.3Ω
  • 0R7 = 0.7kΩ

У высокоточных резисторов, показатель погрешности которых составляет 1%, буква ставится в конце номинала и является множителем. Две цифры в начале обозначают код, по которому определяется сопротивление:

  • 92Z = 0.89Ω ± 1%
  • 32D = 210kΩ ± 1%
  • 24E = 1.74MΩ ± 1%

Где купить недорогие резисторы?


Заходите в наш интернет-магазин, там большой выбор недорогих резисторов с быстрой доставкой по России и СНГ.

Вольтик.ру — это более 800 товаров для мейкеров, радиолюбителей и инженеров.

В магазине представлены:

И многое-многое другое!

Рекомендуем ознакомиться с другими тематическими материалами


Калькулятор светодиодов. Расчет ограничительных резисторов для одиночных светодиодов и светодиодных массивов • Электротехнические и радиотехнические калькуляторы • Онлайн-конвертеры единиц измерения

Калькулятор нарисует принципиальную и монтажную схему одного светодиода с ограничительным резистором или светодиодного массива, состоящего из нескольких параллельных ветвей светодиодов, с последовательно включенным ограничительным резистором. Если вы только начинаете изучать электронику или учитесь в техническом университете, вы можете использовать этот калькулятор для изучения светодиодов. Если же вы не в первый раз разрабатываете массив светодиодов, воспользуйтесь им для проверки своих расчетов. И конечно, этот и другие калькуляторы на TranslatorsCafe.com пригодятся всем, кто хочет изучить технический английский, так как все они есть и в английской версии.

Пример: Рассчитать последовательно-параллельный массив, состоящий из 30 красных светодиодов с прямым напряжением 2 В и прямым током 20 мА для напряжения источника 12 В.

Входные данные

Напряжение источника питания

VsВ

Напряжение источника питания должно быть выше прямого напряжения светодиода и менее 250 В.

Прямой ток светодиода

IfмА

Для питания мощных светодиодов необходимо использовать стабилизаторы тока, а не ограничительные резисторы.

Выберите тип светодиода

Выберите тип светодиодаинфракрасныйкрасныйзелёныйжёлтыйоранжевый/янтарныйсинийбелыйдругой

или Прямое напряжение светодиода

VfВ

Количество светодиодов в массиве

Nt

Количество светодиодов в цепи последовательно включенных светодиодов с ограничительным резистором. Если этот параметр не задан, он будет рассчитан автоматически.

Ns

Число светодиодов в цепи последовательно включенных светодиодов не должно быть больше {0} для заданных напряжения источника питания и прямого напряжения светодиода.

Выходные данные

Такая схема имеет слишком низкий КПД из-за большой мощности, рассеиваемой на одном или нескольких ограничительных резисторах.

Массив {0} x {1}, всего светодиодов {2}

Число светодиодов в одной цепи {0}

Принципиальная схема

Монтажная схема

Номинал и максимальная рассеиваемая мощность резистора для последовательной цепи с максимальным для данного напряжения питания количеством светодиодов:

Общая мощность, рассеиваимая на всех ограничительных резисторах:

Общая мощность, рассеиваемая всеми светодиодами:

Общая мощность, потребляемая массивом светодиодов:

Ток, потребляемый от источника питания:

Количество светодиодов в матрице:

Количество последовательных ветвей, соединенных параллельно:

Количество светодиодов в последовательной ветви с макс. количеством светодиодов:

Количество светодиодов в дополнительной ветви с количеством светодиодов, меньшим максимального:

Определения и формулы для расчета

Одиночный светодиод

Светодиод (светоизлучающий диод) — полупроводниковый источник излучения в оптическом диапазоне с двумя или более выводами. Монохромные светодиоды обычно имеют два вывода, двухцветные — два или три вывода, трехцветные снабжены четырьмя выводами. Светодиод излучает свет, если к его вывода приложено определенное прямое напряжение.

Обычный инфракрасный светодиод и его условное обозначение на принципиальных схемах (на российских принципиальных схемах светодиоды изображают без разрыва проводника). Квадратный кристалл светодиода установлен на отрицательном электроде (катоде). К положительному электроду (аноду) кристалл подключается с помощью тонкого проводника.

Обычный инфракрасный светодиод и его условное обозначение на принципиальных схемах (на российских принципиальных схемах светодиоды изображают без разрыва проводника). Квадратный кристалл светодиода установлен на отрицательном электроде (катоде). К положительному электроду (аноду) кристалл подключается с помощью тонкого проводника.

Для подключения светодиода к источнику питания можно использовать простую схему с последовательно включенным токоограничительным резистором. Резистор необходим в связи с тем, что падение напряжение на светодиоде является постоянным в относительно широком диапазоне рабочих токов.

Цвета светодиодов, материал полупроводника, длина волны и падение напряжения
ЦветМатериал полупроводникаДлина волныПадение напряжения
ИнфракрасныйАрсенид галлия (GaAs)850-940 нм
КрасныйАрсенид-фосфид галлия (GaAsP)620-700 нм1.6—2.0 В
ОранжевыйАрсенид-фосфид галлия (GaAsP)590-610 нм2.0—2.1 В
ЖелтыйАрсенид-фосфид галлия (GaAsP)580-590 нм2.1—2.2 В
ЗеленыйФосфид алюминия-галлия (AlGaP)500-570 нм1.9—3.5 В
СинийНитрид индия-галлия (InGaN)440-505 нм2.48—3.6 В
БелыйДиоды с люминофором или трехцветные RGBШирокий спектр2.8—4.0 В

Поведение светодиодов и резисторов в схемах отличается. В соответствии с законом Ома, резисторы имеют линейную зависимость падения напряжения от протекающего через них тока:

Formula

Вольтамперные характеристики типичных светодиодов различных цветов

Если напряжение на резисторе увеличивается, ток также пропорционально увеличивается (здесь мы предполагаем, что величина сопротивления резистора остается постоянной). Светодиоды ведут себя не так. Их поведение соответствует поведению обычных диодов. Вольтамперные характеристики светодиодов разного цвета приведены на рисунке. Они показывают, что ток через светодиод не прямо пропорционален падению напряжения на светодиоде. Видно, что имеется экспоненциальная зависимость тока от прямого напряжения. Это означает, что при небольшом изменении напряжения ток может измениться очень сильно.

Если прямое напряжение на светодиоде невелико, его сопротивление очень большое и светодиод не горит. При превышении указанного в технических характеристиках порогового уровня светодиод начинает светиться и его сопротивление быстро падает. Если приложенное напряжение превышает рекомендуемую величину прямого напряжения, которое может быть в пределах 1,5—4 В для светодиодов различных цветов, ток через светодиод резко растет, что может привести к выходу его из строя. Для ограничения этого тока, последовательно со светодиодом включают резистор, который ограничивает ток таким образом, что он не превышал рабочий ток, указанный в характеристиках светодиода.

Формулы для расчетов

Светодиод в прямоугольном корпусе с плоским верхом применяется, например, для индикаторов уровня

Светодиод в прямоугольном корпусе с плоским верхом применяется, например, для индикаторов уровня

Ток через ограничительный резистор Rs можно рассчитать по формуле закона Ома, в которой из напряжения питания Vs вычитается прямое падение напряжения на светодиоде Vf:

Formula

Здесь Vs напряжение источника питания в вольтах (например, 5 В от шины USB), Vf прямое падение напряжения на светодиоде и I прямой ток через светодиод в амперах. Значения Vf и If приводятся в технических характеристиках светодиода. Типичные значения Vf показаны выше в таблице. Типичный ток индикаторных светодиодов 20 мА.

После расчета сопротивления резистора, из ряда номиналов сопротивлений выбирается ближайшее большее стандартное значение. Например, если расчет показывает, что нужен резистор Rs = 145 ом, мы (и калькулятор) выберем резистор Rs = 150 ом.

Токоограничительный резистор рассеивает определенную мощность, которая рассчитывается по формуле

Formula

Оранжевые светодиоды обычно используются в маршрутизаторах для указания скорости обмена 10/100 Мбит/с. Зеленые светодиоды горят при скорости 1000 Мбит/с

Оранжевые светодиоды обычно используются в маршрутизаторах для указания скорости обмена 10/100 Мбит/с. Зеленые светодиоды горят при скорости 1000 Мбит/с

Для надежной работы резистора его мощность выбирается вдвое выше расчетой. Например, если по формуле получилось 0,06 Вт, мы выберем резистор на 0,125 Вт.

А теперь рассчитаем эффективность работы нашей схемы (ее КПД), который покажет какой процент мощности, отдаваемой источником питания, потребляется светодиодом. На светодиоде рассеивается такая мощность:

Formula

Тогда общее потребление будет равно

Formula

КПД схемы включения светодиода с ограничительным резистором:

Formula

Для выбора источника питания необходимо рассчитать ток, который он должен отдавать в схему. Это делается по формуле:

Formula

Светодиодная лента со светодиодами типа 5050; цифры 50 и 50 означают длину и ширину микросхемы в миллиметрах; токоограничительные резисторы 150 ом уже установлены на ленте последовательно со светодиодами

Светодиодная лента со светодиодами типа 5050; цифры 50 и 50 означают длину и ширину микросхемы в миллиметрах; токоограничительные резисторы 150 ом уже установлены на ленте последовательно со светодиодами

Светодиодные массивы

Одиночный светодиод можно зажигать с помощью токоограничительного резистора. Однако для питания светодиодных массивов, которые все чаще используются для освещения, подсветки в телевизорах и компьютерных мониторах, в рекламе и для других целей, необходимы специализированные источники питания. Мы все привыкли к источникам, выдающим стабилизированное напряжение питания. Однако, для питания светодиодов нужны источники, в которых стабилизируется ток, а не напряжение. Однако и с такими источниками ограничительные резисторы все равно устанавливают.

Если нужно изготовить светодиодный массив, используют несколько последовательных светодиодных цепей, соединенных параллельно. Для цепи из последовательных светодиодов необходим источник питания с напряжением, которое превышает сумму падений напряжений на отдельных светодиодах. Если его напряжение выше этой суммы, необходимо включить в цепь один токоограничительный резистор. Через все светодиоды течет одинаковый ток, что (до определенной степени) позволяет получить одинаковую яркость.

Однако если один из светодиодов в цепи откажет так, что он будет в обрыве (именно такой отказ чаще всего и происходит), вся цепочка светодиодов погаснет. В некоторых схемах и конструкциях для предотвращения таких отказов вводят особый шунт, например, ставят стабилитрон параллельно каждому диоду. Когда диод сгорает, напряжение на стабилитроне становится достаточно высоким и он начинает проводить ток, обеспечивая работу исправных светодиодов. Этот подход хорош для маломощных светодиодов, однако в схемах, предназначенных для наружного освещения, нужны более сложные решения. Конечно, это приводит к увеличению стоимости и габаритов устройств. Сейчас (в 2018 году) можно наблюдать, что светодиодные фонари на улицах, при планируемом сроке службы в 10 лет служат не более года. То же относится и к бытовым светодиодным лампам, в том числе и производителей с известными именами.

Полоса светодиодов, используемая для подсветки телевизионного ЖК -дисплея. Такая полоска устанавливается с двух сторон панели дисплея. Данная конструкция позволяет делать очень тонкие дисплеи. Отметим, что телевизионные ЖК-дисплеи со светодиодной подсветкой, которые обычно продаются под названием LED TV, то есть «светодиодные телевизоры» таковыми на самом деле не являются. В настоящих светодиодных телевизорах (OLED TV) используются светодиодные графические экраны на органических светодиодах и стоят они значительно дороже телевизоров с ЖК-дисплеем.

Полоса светодиодов, используемая для подсветки телевизионного ЖК -дисплея. Такая полоска устанавливается с двух сторон панели дисплея. Данная конструкция позволяет делать очень тонкие дисплеи. Отметим, что телевизионные ЖК-дисплеи со светодиодной подсветкой, которые обычно продаются под названием LED TV, то есть «светодиодные телевизоры» таковыми на самом деле не являются. В настоящих светодиодных телевизорах (OLED TV) используются светодиодные графические экраны на органических светодиодах и стоят они значительно дороже телевизоров с ЖК-дисплеем.

При расчете требуемого сопротивления токоограничительного резистора Rs, все падения напряжения на каждом светодиоде складываются. Например, если падение напряжения на каждом из пяти соединенных последовательно горящих светодиодов составляет 2 В, то полное падение напряжение на всех пяти будет 2 × 5 = 10 В.

Несколько идентичных светодиодов можно соединять и параллельно. У параллельно соединенных светодиодов прямые напряжения Vf должны быть одинаковыми — иначе в них не будут протекать одинаковые токи и их яркость будет различной. Если светодиоды соединяются параллельно, очень желательно ставить токоограничительный резистор последовательно с каждым из них. При параллельном соединении отказ одного светодиода, при котором он будет в обрыве, не приведет к выходу из строя всего массива — он будет работать нормально. Другой проблемой параллельного соединения является выбор эффективного источника питания, обеспечивающего большой ток при низком напряжении. Такой источник питания будет стоить намного больше, чем источник той же мощности, но на высокое напряжение и меньший ток.

В этом обычном уличном фонаре 8 параллельных цепей из пяти последовательно соединенных мощных светодиодов питаются от источника питания со стабилизацией тока с высоким КПД. Отметим, что две цепи в этом фонаре (слева вверху и справа внизу), установленном всего несколько месяцев назад, уже сгорели, так как в каждой из них светодиоды соединены последовательно, а схемы для предотвращения отказов отсутствуют или не работают.

В этом обычном уличном фонаре 8 параллельных цепей из пяти последовательно соединенных мощных светодиодов питаются от источника питания со стабилизацией тока с высоким КПД. Отметим, что две цепи в этом фонаре (слева вверху и справа внизу), установленном всего несколько месяцев назад, уже сгорели, так как в каждой из них светодиоды соединены последовательно, а схемы для предотвращения отказов отсутствуют или не работают.

Расчет токоограничительных резисторов

Если количество светодиодов в последовательной цепи NLEDs in string (обозначенное Ns в поле ввода) введено, то максимальное количество светодиодов в цепи последовательно соединенных светодиодов NLEDs in string max определяется как

Formula

Если количество светодиодов в последовательной цепи NLEDs in string (обозначенное Ns в поле ввода) введено, то максимальное количество светодиодов в цепи последовательно соединенных светодиодов NLEDs in string max определяется как

Formula

Светодиоды типа 3014 (3,0 × 1,4 мм) для поверхностного монтажа, используемые для боковой подсветки ЖК-панели телевизора.

Светодиоды типа 3014 (3,0 × 1,4 мм) для поверхностного монтажа, используемые для боковой подсветки ЖК-панели телевизора.

Количество цепей с максимальным количество светодиодов в цепи Nstrings:

Formula

Количество светодиодов в дополнительной цепи с остатком светодиодов Nremainder LEDs :

Formula

Если Nremainder LEDs = 0, то дополнительной цепи не будет.

Определим сопротивление токоограничительного резистора в цепи с максимальным количеством светодиодов:

Formula

Определим сопротивление токоограничительного резистора в цепи с количеством светодиодов меньше максимального:

Formula

Общая мощность PLED, рассеиваемая всеми светодиодами:

Formula

Мощность, потребляемая всеми резисторами:

Formula

Formula

Гибкие светодиодные дисплеи на железнодорожной станции; в таких дисплеях используются группы светодиодов в качестве отдельных пикселей. В связи с высокой яркостью светодиодов и их хорошей видимостью при ярком солнечном свете, такие дисплеи часто можно увидеть на наружной рекламных щитах и дорожных указателях маршрута. Светодиодные дисплеи также можно использовать для освещения и в этой роли их часто используют в фонарях с регулируемой цветовой температурой для видео и фотосъемки.

Гибкие светодиодные дисплеи на железнодорожной станции; в таких дисплеях используются группы светодиодов в качестве отдельных пикселей. В связи с высокой яркостью светодиодов и их хорошей видимостью при ярком солнечном свете, такие дисплеи часто можно увидеть на наружной рекламных щитах и дорожных указателях маршрута. Светодиодные дисплеи также можно использовать для освещения и в этой роли их часто используют в фонарях с регулируемой цветовой температурой для видео и фотосъемки.

Номинальная мощность резисторов определяется с учетом двойного запаса k = 2, который обеспечивает надежную работу резистора. Выбираем из ряда значений мощности : 0.125; 0.25; 0.5; 1, 2, 3, 4, 5, 8, 10, 16, 25, 50 W резистор с мощностью вдвое выше, чем расчетная.

Рассчитаем общую мощность, потребляемую всеми резисторами:

Formula

Рассчитаем общую мощность, потребляемую светодиодным массивом:

Formula

Рассчитаем ток, который должен обеспечить источник питания:

Formula

И наконец, рассчитаем КПД нашего массива:

Formula

Возможно, вас заинтересуют конвертеры Яркости, Силы света and Освещенности.

Как рассчитать сопротивление резистора для светодиода: формула, онлайн калькулятор

Светодиоды пришли на смену традиционным системам освещения – лампам накаливания и энергосберегающим лампам. Чтобы диод работал правильно и не перегорел, его нельзя подключать напрямую в питающую сеть. Дело в том, что он имеет низкое внутреннее сопротивление, потому если подключить его напрямую, то сила тока окажется высокой, и он перегорит. Ограничить силу тока можно резисторами. Но нужно подобрать правильный резистор для светодиода. Для этого проводятся специальные расчеты.

Резистор

Расчет резистора для светодиода

Чтобы компенсировать сопротивление светодиода, нужно прежде всего подобрать резистор с более высоким сопротивлением. Такой расчет не составит труда для тех, кто знает, что такое закон Ома.

Математический расчет

Схема

Исходя из закона Ома, рассчитываем по такой формуле:

Формула

где Un – напряжение сети; Uvd – напряжение, на которое рассчитана работа светодиода; Ivd – ток.

Допустим, у нас светодиод с характеристиками:

2,1 -3, 4 вольт – рабочее напряжение (Uvd). Возьмем среднее значение 2, 8 вольт.

20 ампер – рабочий ток (Ivd)

220 вольт – напряжение сети (Un)

Формула

В таком случае мы получаем величину сопротивления R = 10, 86. Однако этих расчетов недостаточно. Резистор может перегреваться. Для предотвращения перегрева нужно учитывать при выборе его мощность, которая рассчитывается по следующей формуле:

Формула

Обратите внимание, что резистор подведен на плюсовой контакт диода. Определить полярность диода достаточно просто: плюсовой контакт в колбе по размеру больше минусового.

Для наглядности рекомендуем посмотреть видео:

Графический расчет

Графический способ – менее популярный для расчета резистора на светодиод, но может быть даже более удобный. Зная напряжение и ток диода (их называют еще вольтамперными характеристиками – ВАХ), вы можете узнать сопротивление нужного резистора по графику, представленному ниже:

График

Тут изображен расчет для диода с номинальным током 20мА и напряжением источника питания 5 вольт. Проводя пунктирную линию от 20 мА до пересечения с «кривой led» (синий цвет), чертим пересекающую линию от прямой Uled до прямой и получаем максимальное значение тока около 50 мА. Далее рассчитываем сопротивление по формуле:

Формула

Получаем значение 100 Ом для резистора. Находим для него мощность рассеивания (Силу тока берем из Imax):

Формула

Онлайн-калькулятор расчета сопротивления

Задача усложняется, если вы хотите подключить не один, а несколько диодов.

Для облегчения самостоятельных расчетов мы подготовили онлайн-калькулятор расчета сопротивления резисторов. Если подключать несколько светодиодов, то нужно будет выбрать между параллельным и последовательным соединениями между ними. И для этих схем нужны дополнительные расчеты для источника питания. Можно их легко найти в интернете, но мы советуем воспользоваться нашим калькулятором.

 

Вам понадобится знать:

  1. Напряжение источника питания.
  2. Характеристику напряжения диода.
  3. Характеристику тока диода.
  4. Количество диодов.

А также нужно выбрать параллельную или последовательную схему подключения. Рекомендуем ознакомиться с разницей между соединениями в главах, которые мы подготовили ниже.

Читайте также: Основные способы определения полярности у светодиода.

В каких случаях допускается подключение светодиода через резистор

Никакие диоды, в том числе светодиоды, нельзя включать без ограничения проходящего тока. Резисторы в таком случае просто необходимы. Даже небольшое изменения напряжения вызывают очень сильное изменение тока и, следовательно, перегрев диода.

Если вы планируете подключать несколько диодов, рекомендуем выбирать модели одной фирмы. Одинаковые образцы лучше работают вместе.

Параллельное соединение

Схема

Для тех, кто уже сталкивался на практике со схемами подключения светодиодного освещения, вопрос о выборе между параллельным и последовательным соединением обычно не стоит. Чаще всего выбирают схему последовательного соединения. У параллельного соединения для светодиодов есть один важный недостаток – это удорожание и усложнение конструкции, потому что для каждого диода нужен отдельный резистор. Но такая схема имеет и большой плюс – если сгорела одна линия, то перестанет светить только один диод, остальные продолжат работу.

Читайте также: Схема для плавного включения ламп накаливания 220 В.

Почему нельзя использовать один резистор для нескольких параллельных диодов

Объясняется достаточно просто: если перегорит один светодиод, то на другой (-ие) может попасть больший ток и начнется перегрев. Потому при параллельной схеме подключения каждому диоду нужен отдельный резистор.

Неправильно:

Схема

 

Правильно:

Схема

 

Последовательное соединение светодиодов

Схема

Именно такое соединение пользуется популярностью. Объясняется такой частый выбор простым примером. Представьте, что в елочной гирлянде для каждого светодиода подобран резистор. А в гирлянде этих лампочек бывает более сотни! Параллельное соединение в данном случае невыгодно и трудоемко.

Только в самодельных гирляндах можно встретить параллельное соединение. В заводских моделях всегда последовательное.

Можно ли обойтись без резисторов

В бюджетных или просто старых приборах используются резисторы. Также они используются для подключения всего только нескольких светодиодов.

Но есть более современный способ – это понижение тока через светодиодный драйвер. Так, в светильниках в 90% встречаются именно драйверы. Это специальные блоки, которые через схему преобразуют характеристики тока и напряжения питающей сети. Главное их достоинство – они обеспечивают стабильную силу тока при изменении/колебании входного напряжения.

Читайте также: Как сделать блок питания из энергосберегающей лампы своими руками.

Сегодня можно подобрать драйвер под любое количество светодиодов. Но рекомендуем не брать китайские аналоги! Кроме того, что они быстрей изнашиваются, ещё могут выдавать не те характеристики в работе, которые заявлены на упаковке.

Резистор

Если светодиодов не так много, подойдут и резисторы вместо достаточно высокого по цене драйвера.

Интересное видео по теме:

В заключение

Пишите комментарии и делитесь статьей в социальных сетях! Если возникли вопросы, можно найти в интернете дополнительные видео для расчета сопротивления резистора и на другие близкие темы.

Онлайн калькулятор расчета параллельного соединения резисторов

Соединение резисторов, при котором одноименные выводы каждого из элементов собираются в одну точку, называется параллельным. При этом ко всем резисторам подводится один и тот же потенциал, но величина тока через каждый из них будет отличаться. Для составления схем или при замене резисторов в уже существующих цепях важно знать их суммарное сопротивление, как показано на рисунке:

Параллельное соединение резисторовПараллельное соединение резисторов

Данный калькулятор позволяет рассчитать суммарное сопротивление параллельно соединенных резисторов с любым количеством элементов.

Для этого вам необходимо:

  • Указать в графе «количество резисторов» их число, в нашем примере их три;
  • После того, как вы укажите количество элементов, в поле ниже появится три окошка для ввода значения сопротивления каждого из элементов, к примеру, у вас резисторы сопротивлением 20, 30 и 60 Ом;
  • Далее нажмите кнопку «рассчитать» и в окошке «параллельное сопротивление в цепи» вы получите значение сопротивления в 10 Ом.

Чтобы рассчитать другую цепь или при подборе других элементов, нажмите кнопку «сбросить», чтобы обнулить значение параллельно включенных элементов калькулятора.

Для расчета суммарного сопротивления калькулятором используется такое соотношение:

Формула расчета

Где,

  • Rсум — суммарное сопротивление параллельно соединенных элементов
  • R1 — сопротивление первого резистора;
  • R2 — сопротивление второго резистора;
  • R3 — сопротивление третьего резистора;
  • Rn — сопротивление n-ого элемента.

Таким образом, в рассматриваемом примере параллельно включены три резистора, поэтому формула для определения суммарного сопротивления будет иметь такой вид:

Формула для суммарного сопротивления

Чтобы выразить величину суммарного сопротивления необходимо умножить обе половины уравнения на произведение сопротивлений всех трех резисторов. После этого перенести составляющие элементы по правилу пропорции и получить значение сопротивления:

Итоговая формула

Как видите, расчет параллельного сопротивления резисторов вручную требует немалых усилий, поэтому куда проще его сделать на нашем онлайн калькуляторе.

Обратите внимание, при наличии элементов с сопротивлением в разной размерности Ом, кОм, МОм, их необходимо привести к одной величине, прежде чем производить расчет. К примеру,  в Ом и указывать в поле калькулятора для расчета параллельного соединения резисторов значение непосредственно в Омах.

Онлайн калькулятор расчета последовательного соединения резисторов

При последовательном соединении резисторов конец одного из них соединяется с началом следующего. В такой схеме через все резистивные элементы протекает одинаковый ток I, но падение напряжения на каждом из них пропорционально величине сопротивления. Для расчета электрических величин в схемах используется сложение сопротивлений всех элементов в последовательной цепи для получения суммарной величины, как показано на рисунке:

Последовательное соединение резисторовПоследовательное соединение резисторов

Данный онлайн калькулятор позволяет выполнять расчет суммарного сопротивления для последовательно соединенных элементов цепи.

Чтобы воспользоваться калькулятором расчета вам необходимо:

  • В окошке «количество резисторов» укажите число последовательно соединенных элементов, в данном случае, в схеме представлено три резистора, но может быть и другое количество;
  • После этого в поле ниже появится несколько окошек, в которые вам необходимо внести значение сопротивления каждого резистора, к примеру, 10, 20 и 45 Ом;
  • Нажмите кнопку «рассчитать» и в окошке «сопротивление» вы получите значение сопротивления в 75 Ом.

Для перехода к расчету следующей цепи или при необходимости подобрать другие элементы, нажмите кнопку «сбросить», чтобы обнулить значение последовательно включенных элементов калькулятора.

В работе калькулятора для определения сопротивления цепи последовательно соединенных резисторов используется принцип арифметического сложения. Поэтому формулу для определения суммарного значения можно представить следующим образом:

Rсум = R1 + R2 + R3 +…+ Rn

Где,

  • Rсум — суммарное сопротивление последовательно соединенных элементов
  • R1 — сопротивление первого резистора;
  • R2 — сопротивление второго резистора;
  • R3 — сопротивление третьего резистора;
  • Rn — сопротивление n-ого элемента.

Так как в рассматриваемом примере включено только три элемента, то формула примет такой вид:

Rсум = R1 + R2 + R3

Подставив значение омического сопротивления каждого из элементов, получим:

Rсум = 10 + 20 + 45 = 75 Ом

Использование калькулятора для вычисления суммарного сопротивления в цепи последовательно соединенных резисторов наиболее актуально для схем с большим количеством элементов и дробными величинами.

Следует отметить, если вам известно омическое сопротивление каждого элемента в разных единицах измерения (Ом, кОм, МОм), то их следует привести к одной, к примеру, к Омам, так как калькулятор выполняет расчет для всех резисторов в одинаковой единице.

Отправить ответ

avatar
  Подписаться  
Уведомление о