Калькулятор резистивный делитель: Voltage Divider Calculator – Делитель напряжения на резисторах. Формула расчета, онлайн калькулятор

Содержание

Делитель напряжения на резисторах. Формула расчета, онлайн калькулятор

Делитель напряжения — это простая схема, которая позволяет получить из высокого напряжения пониженное напряжение.

Используя только два резистора и входное напряжение, мы можем создать выходное напряжение, составляющее определенную часть от входного. Делитель напряжения является одной из наиболее фундаментальных схем в электронике. В вопросе изучения работы делителя напряжения следует отметить два основных момента – это сама схема и формула расчета.

Схема делителя напряжения на резисторах

Схема делителя напряжения включает в себя входной источник напряжения и два резистора. Ниже вы можете увидеть несколько схематических вариантов изображения делителя, но все они несут один и тот же функционал.

Обозначим резистор, который находится ближе к плюсу входного напряжения (Uin) как R1, а резистор находящийся ближе к минусу как R2. Падение напряжения (Uout) на резисторе R2 — это пониженное напряжение, полученное в результате применения резисторного делителя напряжения.

Расчет делителя напряжения на резисторах

Расчет делителя напряжения предполагает, что нам известно, по крайней мере, три величины из приведенной выше схемы: входное напряжение и сопротивление обоих резисторов. Зная эти величины, мы можем рассчитать выходное напряжение.

Формула делителя напряжения

Это не сложное упражнение, но очень важное для понимания того, как работает делитель напряжения. Расчет делителя основан на законе Ома.

Для того чтобы узнать какое напряжение будет на выходе делителя, выведем формулу исходя из закона Ома. Предположим, что мы знаем значения Uin, R1 и R2. Теперь на основании этих данных выведем формулу для Uout. Давайте начнем с обозначения токов I1 и I2, которые протекают через резисторы R1 и R2 соответственно:

Наша цель состоит в том, чтобы вычислить Uout, а это достаточно просто используя закон Ома:

Хорошо. Мы знаем значение R2, но пока неизвестно сила тока I2. Но мы знаем кое-что о ней. Мы можем предположить, что I1 равно I2. При этом наша схема будет выглядеть следующим образом:

Что мы знаем о Uin? Ну, Uin это напряжение на обоих резисторах R1 и R2. Эти резисторы соединены последовательно, при этом их сопротивления суммируются:

И, на какое-то время, мы можем упростить схему:

Закон Ома в его наиболее простом вид: Uin = I *R. Помня, что R состоит из R1+R2, формула может быть записана в следующем виде:

А так как I1 равно I2, то:

Это уравнение показывает, что выходное напряжение прямо пропорционально входному напряжению и отношению сопротивлений R1 и R2.

Делитель напряжения — калькулятор онлайн

 Применение делителя напряжения на резисторах

В радиоэлектронике есть много способов применения делителя напряжения. Вот только некоторые примеры где вы можете обнаружить их.

Потенциометры

Потенциометр представляет собой переменный резистор, который может быть использован для создания регулируемого делителя напряжения.

Изнутри потенциометр представляет собой резистор и скользящий контакт, который делит резистор на две части и передвигается между этими двумя частями. С внешней стороны, как правило, у потенциометра имеется три вывода: два контакта подсоединены к выводам резистора, в то время как третий (центральный) подключен к скользящему контакту.

Если контакты резистора подключения к источнику напряжения (один к минусу, другой к плюсу), то центральный вывод потенциометра будет имитировать делитель напряжения.

Переведите движок потенциометра в верхнее положение и напряжение на выходе будет равно входному напряжению. Теперь переведите движок в крайнее нижнее положение и на выходе будет нулевое напряжение. Если же установить ручку потенциометра в среднее положение, то мы получим половину входного напряжения.

Резистивные датчики

Большинство датчиков применяемых в различных устройствах представляют собой резистивные устройства. Фоторезистор представляет собой переменный резистор, который изменяет свое сопротивление, пропорциональное количеству света, падающего на него. Так же есть и другие датчики, такие как датчики давления, ускорения и термисторы и др.

Так же резистивный делитель напряжения помогает измерить напряжение при помощи микроконтроллера (при наличии АЦП).

Пример работы делителя напряжения на фоторезисторе.

Допустим, сопротивление фоторезистора изменяется от 1 кОм (при освещении) и до 10 кОм (при полной темноте). Если мы дополним схему постоянным сопротивлением примерно 5,6 кОм, то мы можем получить широкий диапазон изменения выходного напряжения при изменении освещенности фоторезистора.

Как мы видим, размах выходного напряжения при уровне освещения от яркого до темного получается в районе 2,45 вольт, что является отличным диапазоном для работы большинства АЦП.

Делитель напряжения на резисторах: онлайн калькулятор расчета

Схема делителя напряжения является простой, но в тоже время фундаментальной электросхемой, которая очень часто используется в электронике. Принцип работы ее прост: на входе подается более высокое входное напряжение и затем оно преобразуется в более низкое выходное напряжение с помощью пары резисторов. Формула расчета выходного напряжения основана на законе Ома и приведена ниже.

Классическая формула делителя напряженияКлассическая формула делителя напряжения

где:

  • Uвх. — входное напряжение источника, В;
  • Uвых. — выходное напряжение, В;
  • R1 — сопротивление 1-го резистора, Ом;
  • R2 — сопротивление 2-го резистора, Ом.
Схема классического делителя напряжения на 2 резистораСхема классического делителя напряжения на 2 резистора

В калькулятор ниже введите любые три известных значения Uвх., Uвых. и R1  и нажмите «Рассчитать», чтобы найти значение R2.

Упрощения

Существует несколько обобщений, которые следует учитывать при использовании делителей напряжения. Это упрощения, которые упрощают оценку схемы деления напряжения.

Во-первых, если R2 и R1 равны, то выходное напряжение вдвое меньше входного напряжения. Это верно независимо от значений резисторов.

Итак, если R1 = R2, то получаем следующее уравнение:

Формула делителя напряжения, если сопротивления равныФормула делителя напряжения, если сопротивления равны

Во-вторых, если R2 на порядок больше чем R1, то выходное напряжение Uвых будет очень близко к Uвх., то есть Uвх. ≈ Uвых. А на R1 будет очень мало напряжения.

Формула делителя напряжения, если R2 на порядок больше R1Формула делителя напряжения, если R2 на порядок больше R1

Во-третьих, если наоборот 

R1 на порядок больше чем R2, то Uвых будет очень маленьким по сравнению с Uвх, то есть будет стремиться к нулю. Практически все входное напряжение упадет в таком случае на R1.

Формула делителя напряжения, если R2 на порядок больше R1
Вы можете воспользоваться онлайн калькулятором ниже, чтобы проверить как саму классическую формулу делителя напряжения, представленную на рисунке 1, так и вышеприведенные упрощения этой формулы.

Калькулятор делителя напряжения на резисторах

Делитель напряжения ► позволяет получить пониженное напряжение. Рассмотрим, как работает делитель напряжения на резисторах, предоставим онлайн калькулятор.

Делитель напряжения на резисторах — это схема, позволяющая получить из высокого напряжения пониженное напряжение. Используя всего два резистора, мы можем создать любое выходное напряжение, составляющее меньшую часть от входного напряжения. Делитель напряжения является фундаментальной схемой в электронике и робототехнике. Для начала рассмотрим электрическую схему и формулу для расчета.

Как работает делитель напряжения на резисторах

Для того, чтобы разобраться в принципе работы резисторного делителя напряжения и понять, как рассчитать делитель напряжения на резисторах, следует ознакомиться с его принципиальной схемой (см. картинку ниже — несколько вариантов изображения делителя).  Схема включает в себя входное напряжение и два резистора.

Расчет делителя напряжения на резисторах онлайн калькулятор
Расчет делителя напряжения на резисторах онлайн калькуляторРасчет делителя напряжения на резисторах онлайн калькулятор

Резистор, находящийся ближе к плюсу входного напряжения Vвх, обозначен R1, резистор находящийся ближе к минусу обозначен R2. Падение напряжения Vвых — это пониженное выходное напряжение, полученное в результате резисторного делителя напряжения. Для расчета выходного напряжения необходимо знать три величины из приведенной схемы — входное напряжение и сопротивление обоих резисторов.

Расчет делителя напряжения на резисторах основан на законе Ома.

Vвых = R2 х Vвх / (R1 + R2)

Эта формула показывает, что выходное напряжение резисторного делителя прямо пропорционально входному напряжению и обратно пропорционально отношению сопротивлений R1 и R2. На этом принципе работают потенциометры (переменные резисторы) и многие резистивные датчики, например, датчик освещенности на фоторезисторе. Смотрите калькулятор делителя напряжения на резисторах онлайн.

Расчет делителя напряжения на резисторах онлайн

Делитель напряжения | Расчет делителя напряжения

Делитель напряжения (теория)

Для того, чтобы поделить напряжение, нам потребуется два и более резисторов.  Для начала рассмотрим вот такой рисунок:

Наш схемка состоит из двух резисторов, подключенных последовательно. На эти резисторы подается напряжение. Оно может быть как переменное, так и постоянное. Назовем его U. Пропуская ток через эти резисторы, у нас сразу же в дело вступит Закон Ома.  Мы знаем, что если резисторы соединены последовательно, то их общее  сопротивление  будет равняться сумме их номиналов. То есть получается, что

Rобщее=R1+R2

I=U/Rобщее

то есть можно написать

I=U/(R1+R2)

При последовательном соединении резисторов, сила тока – I, проходящая через каждый резистор одинакова – это есть закон последовательного соединения резисторов. Так, разобрались. У нас каждый резистор обладает каким-то своим сопротивлением. Отсюда напрашивается вывод из Закона Ома, что на каждом сопротивлении у нас будет какое-то свое напряжение, которое зависит от сопротивления резистора.

На сопротивлении R1  у нас будет напряжение U1, а на сопротивлении R2  у нас будет напряжение U2

I=U2/R2=U1/R1=U/(R1+R2)

 

Давайте найдем значения U1 и U2. Вы все учились в школе и сможете без проблем решить эту уравнение. Умножаем, сокращаем и в конце концов получаем, что

U1=UxR1/(R1+R2)

U2=UxR2/(R1+R2)

А вы знаете, что если сложить правые части уравнения, получим U ? Не верите? Проверьте! Отсюда получаем, что U=U1+U2.

Короче говоря простым языком чайника: если резисторы включены в цепь последовательно, то на каждом резисторе падает напряжение (падает, значит на концах резистора имеется это напряжение) и сумма падений напряжений на всех резисторах будет равняться напряжению источника (батарейки, блока питания или какого-нибудь источника ЭДС). Мы разделили напряжение источника U на два  разных напряжения U1 и U2.

Для лучшего понимания давайте рассмотрим еще одну цепь, состоящую из n резисторов

делитель напряжения

На схеме выше мы видим резисторы, которые соединены последовательно. Чему будет равняться Uобщ ? Так как резисторы соединены последовательно, следовательно, на каждом резисторе падает какое-то напряжение. Сумма падений напряжения на всех резисторах будет равняться Uобщ . В нашем случае формула запишется как

формула делителя напряжения

Делитель напряжения (практика)

Итак у нас имеются вот такие два резистора и наш любимый мультиметр:

Замеряем сопротивление маленького резистора, R1=109,7 Ом.

Замеряем сопротивление большого резистора R2=52,8 Ом.

Выставляем на блоке питания ровно 10 Вольт. Замеряем напряжение с помощью мультиметра (не смотрите на показания блока питания, он обладает бОльшей погрешностью, чем мультиметр).

Цепляемся блоком питания за эти два резистора, запаянные последовательно. Напомню, что на блоке ровно 10 Вольт. Показания амперметра на блоке питания тоже немного неточны. Силу тока мы будем замерять с помощью мультиметра.

Замеряем напряжение на большом резисторе. На нем падает 3,21 Вольт.

Замеряем напряжение на маленьком резисторе. На нем падает 6,77 Вольт

Ну что, с математикой думаю у всех в порядке. Складываем эти два значения напряжения 3,21+6,77 = 9,98 Вольт. А куда делись еще 0,02 Вольта? Спишем на погрешность щупов и средств измерений. Вот наглядный пример того, что мы смогли разделить напряжение на два разных напряжения.

Сила тока при последовательном соединении сопротивлений

Давайте же  убедимся, что сила тока при последовательном соединении резисторов везде одинакова. 0,04 А или 40 мА.

Убедились? 🙂

Переменный резистор в роли делителя напряжения

Для того, чтобы плавно делить напряжение, у нас есть переменный резистор в роли делителя напряжения. Его еще также называют потенциометром.

Его обозначение на схеме выглядит вот так:

обозначение потенциометра на схеме

Принцип такой: между двумя крайними контактами постоянное сопротивление. Сопротивление относительно среднего контакта по отношению к крайним может меняться  в зависимости от того, куда мы будем крутить крутилку этого переменного резистора. Этот резистор рассчитан на мощность 1Вт и имеет полное сопротивление 330 Ом. Давайте посмотрим, как он будет делить напряжение.

Так как мощность небольшая , всего 1 Вт, то не будем нагружать его большим напряжением. Формула мощности P=IU.  Ток потребления из закона Ома I=U/R. Значит, этот переменный резистор может делить только маленькое напряжение при маленьком сопротивлении нагрузки и наоборот. Главное, чтобы значение мощности этого  резистора не вышло за грани. Поэтому я буду делить напряжение в 1 Вольт.

Для этого выставляем на блоке напряжение в 1 Вольт и цепляемся к нашему резистору по двум крайним контактам.

Крутим крутилку в каком-нибудь произвольном направлении и останавливаем ее. Замеряем напряжение между левым и средним контактом:

0,34 Вольта

Замеряем напряжение между средним и правым контактом

0,64 Вольта

Суммируем напряжение  и получаем 0,34+0,64=0,98 Вольт. 0,02 Вольта опять где-то затерялись, скорее всего на щупах, так как они тоже обладают сопротивлением.

Заключение

В настоящее время делители напряжения создаются с помощью абсолютно других законов электроники. Это может быть полупроводниковые схемы или даже схемы с использованием микроконтроллеров. Но, если требуется быстро получить делитель напряжения и изменять малую мощность напряжения или сигнала в электронике, то делитель напряжения  на резисторах вам пригодится как нельзя кстати.

Расчет делителя напряжения на резисторах: онлайн-калькулятор

Делитель напряжения — это простой и удобный способ получить нужное напряжение в определенной точке схемы. Он используется в цепях обратной связи для измерения выходных параметров, когда на выходе десятки вольт, а измерительный вход микросхемы рассчитан на единицы или доли вольт и во множестве других целей. Простейший вариант строится на резисторах их может быть 2 и больше.

Делитель напряжения на схеме

Давайте разберемся как рассчитать данный элемент цепи. Можно сделать это вручную или использовать следующий онлайн калькулятор, который выполняет расчет делителя напряжения на резисторах:

Главное, что нельзя забывать, так это то, что ток делителя должен быть на 1 и более порядков выше, чем входной ток нагрузки. Это нужно, чтобы минимизировать просадки напряжения и сохранить стабильность выходных параметров. После этого приступайте к расчетам по току и напряжению.

Если ваш делитель состоит из двух элементов, то ток через него рассчитывают по формуле:

I=Uвх/(R1+R2)=Uвх/Rобщ

Или сопротивление по заданному току:

Rобщ=Uвх/I

Нам известно R общее при заданном I, входное напряжение и сколько нам нужно получить на выходе. Рассчитываем сопротивления:

R2=Uвых*Rобщ/Uвх

Тогда:

R1=Rобщ-R2

Если нужно определить параметры цепочки по известным сопротивлениям и входному напряжению — рассчитывают выходное по формуле:

Uвых=Uвх*R2/R1+R2

Значит, зная напряжение на выходе можно рассчитать его и на входе:

Uвх=(Uвых*R1+R2)/R2

Это основной метод расчета резистивного делителя, бывает еще и емкостной или индуктивный. В этом случае вместо сопротивления активного R в расчетах фигурирует сопротивление реактивное Xc или Xl.

Для регулировки выходного напряжения резисторного делителя вместо нижнего сопротивления устанавливают подстроечный или переменный резистор. Расчеты при этом ничем не отличаются — в них используют максимальное значение на переменном резисторе. Также можно ограничить минимальное выходное напряжение, установив последовательно с переменным постоянное, тогда минимальное рассчитывается без учета переменника. Такую схему удобно использовать, если у вас резисторы с большим допуском, а нужно получить точные выходные параметры.

Изменение выходного напряжения

Вы можете сэкономить время, воспользовавшись онлайн калькулятором, в нем вы можете рассчитать номиналы элементов с учетом нужных выходного и входного напряжения. Использование калькулятора сэкономит ваше время, если нужно посчитать большую схему или вы запутались и не можете разобраться, как посчитать резистивный делитель с нагрузкой.

Учтите, что элементы нужно подбирать не только по номиналу, но и по мощности, потому что при большом токе потребления нагрузки, нужно рассчитывать схему на большие токи. В результатах расчетов онлайн калькулятора будет указано, на сколько ватт нужен резистор.

Расчет делителя напряжения на резисторах, конденсаторах и индуктивностях — Help for engineer

Расчет делителя напряжения на резисторах, конденсаторах и индуктивностях

Делитель напряжения используется в электрических цепях, если необходимо понизить напряжение и получить несколько его фиксированных значений. Состоит он из двух и более элементов (резисторов, реактивных сопротивлений). Элементарный делитель можно представить как два участка цепи, называемые плечами. Участок между положительным напряжением и нулевой точкой – верхнее плечо, между нулевой и минусом – нижнее плечо.

Делитель напряжения на резисторах может применятmся как для постоянного, так и для переменного напряжений. Применяется для низкого напряжения и не предназначен для питания мощных машин. Простейший делитель состоит из двух последовательно соединенных резисторов:

На резистивный делитель напряжения подается напряжение питающей сети U, на каждом из сопротивлений R1 и R2 происходит падение напряжения. Сумма U1 и U2 и будет равна значению U.

В соответствии с законом Ома (1):

Закон Ома

Падение напряжения будет прямо пропорционально значению сопротивления и величине тока. Согласно первому закону Кирхгофа, величина тока, протекающего через сопротивления одинакова. С чего следует, что падение напряжения на каждом резисторе (2,3):

Закон Ома
Закон Ома

Тогда напряжение на всем участке цепи (4):

Напряжение всей цепи

Отсюда определим, чему равно значение тока без включения нагрузки (5):

Величина тока

Если подставить данное выражение в (2 и 3), то получим формулы расчета падения напряжения для делителя напряжения на резисторах (6, 7):

Величина тока
Величина тока

Необходимо упомянуть, что значения сопротивлений делителя должны быть на порядок или два (все зависит от требуемой точности питания) меньше, чем сопротивление нагрузки. Если же это условие не выполняется, то при приведенном расчете подаваемое напряжение будет посчитано очень грубо.

Для повышения точности необходимо сопротивление нагрузки принять как параллельно подсоединенный резистор к делителю. А также использовать прецизионные (высокоточные) сопротивления.

Онлайн подбор сопротивлений для делителя

Пусть источник питания выдает 24 В постоянного напряжения, примем, что величина сопротивления нагрузки переменная, но минимальное значение равно 15 кОм. Необходимо рассчитать параметры резисторов для делителя, выходное напряжение которого равно 6 В.

Таким образом, напряжения: U=24 B, U2=6 В; сопротивление резисторов не должно превышать 1,5 кОм (в десять раз меньше значения нагрузки). Принимаем R1=1000 Ом, тогда используя формулу (7) получим:

Величина тока

выразим отсюда R2:

Величина тока

Зная величины сопротивления обоих резисторов, найдем падение напряжения на первом плече (6):

Величина тока

Ток, который протекает через делитель, находится по формуле (5):

Величина тока

Схема делителя напряжения на резисторах рассчитана выше и промоделирована:

Величина тока

Использование делителя напряжения очень неэкономичный, затратный способ понижения величины напряжения, так как неиспользуемая энергия рассеивается на сопротивлении (превращается в тепловую энергию). КПД очень низкий, а потери мощности на резисторах вычисляются формулами (8,9):

Величина тока
Величина тока
Величина тока
Величина тока

По заданным условиям, для реализации схемы делителя напряжения необходимы два резистора:

1. R1=1 кОм, P1=0,324 Вт.
2. R2=333,3 Ом, P2=0,108 Вт.

Полная мощность, которая потеряется:

Полная мощность
Мощность на делителе

Делитель напряжения на конденсаторах применяется в схемах высокого переменного напряжения, в данном случае имеет место реактивное сопротивление.

Мощность на делителе

Сопротивление конденсатора рассчитывается по формуле (10):

Мощность на делителе
где С – ёмкость конденсатора, Ф;
f – частота сети, Гц.

Исходя из формулы (10), видно, что сопротивление конденсатора зависит от двух параметров: С и f. Чем больше ёмкость конденсатора, тем сопротивление его ниже (обратная пропорциональность). Для ёмкостного делителя расчет имеет такой вид (11, 12):

Мощность на делителе
Мощность на делителе

Еще один делитель напряжения на реактивных элементах – индуктивный, который нашел применение в измерительной технике. Сопротивление индуктивного элемента при переменном напряжении прямо пропорционально величине индуктивности (13):

Мощность на делителе
где L – индуктивность, Гн.

Мощность на делителе

Падение напряжения на индуктивностях (14,15):

Мощность на делителе

Мощность на делителе

Недостаточно прав для комментирования

Делитель напряжения

 

В этой статье расскажем про делитель напряжения и покажем примеры с решениями.

Для уменьшения значения входного (питающего) напряжения используют делитель напряжения на резисторах. В нём, выходное напряжение Uвых зависит от значения входного (питающего) напряжения Uвх и значения сопротивления резисторов. Делитель напряжения – наиболее часто применяемое соединение резисторов. Например, переменный резистор, используемый в качестве регулятора громкости Ваших компьютерных колонок, является делителем напряжения с изменяемыми сопротивлениями плеч, где он выполняет роль ограничителя амплитуды входного сигнала.

 

Так как, сопротивление нагрузки влияет на выходное напряжение Uвых делителя, для обеспечения точности делителя напряжения, необходимо выполнять правило (2):Значение резистора R2 должно быть приблизительно на два порядка меньше (в 100 раз) сопротивления нагрузки подключаемой к выходу делителя.

Если Вам не нужна высокая точность, то эту разницу можно снизить до 10 раз.

Используя закон Ома, и пренебрегая малым током нагрузки, делитель напряжения можно описать соотношением:

(8)

Преобразовывая указанную формулу так, как нам удобно, можно определить:
1. Выходное напряжение Uвых по известным значениям входного напряжения Uвх и сопротивлений резисторов R1, R2 :

(9)

Пример: Необходимо определить выходное напряжение Uвых делителя при известных напряжении источника тока Uвх = 50 В, и значениях R1 = 10 кОм и R2 = 500 Ом.
Решение: По формуле вычисляем Uвых = 50 * 500 / (10000 + 500) = 2,38 В.

2. Входное напряжение делителя Uвх , по известным значениям выходного напряжения Uвых и сопротивлений резисторов R1, R2 :

(10)

Пример: Необходимо определить входное напряжение Uвх делителя при необходимых выходном напряжении Uвых = 4 В, и значениях R1 = 15 кОм и R2 = 3 кОм.
Решение: По формуле вычисляем Uвх = 4 * (15000 + 3000) / 3000 = 24 В.

3. Значение R1 по известным значениям входного напряжения Uвх , выходного напряжения Uвых и сопротивления резистора R2 :

(11)

Пример: С помощью делителя напряжения необходимо получить на нагрузке сопротивлением 50 кОм напряжение Uвых = 10 В от источника напряжением Uвх = 50 В.
Решение: Сопротивление резистора R2 должно быть в 100 раз меньше сопротивления нагрузки 50 кОм (см. правило 2). Выполняем это условие: R2 = 500 Ом.
По формуле вычисляем R1 = 50 * 500 / 10 – 500 = 2000 Ом = 2 кОм
Не забывайте, что сам делитель потребляет ток от источника тока, в соответствии с законом Ома (формула 1): Iдел = Uвх / (R1 + R2) = 50/(2000+500) = 0,02 А (20 мА).
Определим рассеиваемую мощность резисторов по формуле (3):
Для резистора R1 : P = 0,02 * 0,02 * 2000 = 0,8 Вт; по правилу (1) выбираем резистор мощностью P = 2 Вт;
Для резистора R2 : P = 0,02 * 0,02 * 500 = 0,2 Вт; по правилу (1) выбираем резистор мощностью P = 0,5 Вт.

4. Значение R1 и R2 по известным значениям входного напряжения Uвх , выходного напряжения Uвых и входного (общего) сопротивления делителя Rобщ , где Rобщ = R1 + R2 :

(12)

(13)

</div

Пример: Определить значения R1 и R2 делителя напряжения, если их сумма R1+R2 = 1кОм, при входном напряжении источника Uвх = 50 В и напряжении на выходе Uвых = 20 В.
Решение: По формуле (4) вычисляем R2 = 20 * 1000 / 50 = 400 Ом;
По формуле (5) вычисляем R1 = 1000 — 400 = 600 Ом;
Не забывайте, что сам делитель потребляет ток от источника тока, в соответствии с законом Ома (формула 1): Iдел = Uвх / (R1 + R2) = 50/(600+400) = 0,05 А (50 мА).
Определим рассеиваемую мощность резисторов по формуле (3):
Для резистора R1 : P = 0,05 * 0,05 * 600 = 1,5 Вт; по правилу (1) выбираем резистор мощностью P = 2 Вт;
Для резистора R2 : P = 0,05 * 0,05 * 400 = 1 Вт; по правилу (1) выбираем резистор мощностью P = 2 Вт.

 

Напрашивается законный вопрос: Если есть делитель, значит должен быть и коэффициент деления? Конечно! Но он Вам пригодится лишь тогда, когда вы будете иметь дело с другими элементами, например трансформатором, а не резисторами.

В качестве R2 делителя напряжения может применяться сама нагрузка с её внутренним сопротивлением. В таком случае, R2 указанное в формуле, приравняйте к сопротивлению нагрузки , и используйте те же формулы, которые применимы к двум независимым резисторам. Тогда, правило (2) не используется.

В следующей статье рассмотрим делитель тока.

Отправить ответ

avatar
  Подписаться  
Уведомление о