Лидар это: Лидар — Википедия – не путать с радаром! / Амперка

Содержание

Лидар — Википедия

Лида́р (транслитерация LIDAR англ. Light Detection and Ranging «обнаружение и определение дальности с помощью света») — технология получения и обработки информации об удалённых объектах с помощью активных оптических систем, использующих явления поглощения и рассеяния света в оптически прозрачных средах.

Лидар, произведённый компанией Leica, используемый для сканирования зданий, скальных образований и т. д. с целью создания 3D-моделей.

Лидар как прибор представляет собой, как минимум, активный дальномер оптического диапазона.

  • Сканирующие лидары в системах машинного зрения формируют двумерную или трёхмерную картину окружающего пространства.
  • «Атмосферные» лидары способны не только определять расстояния до непрозрачных отражающих целей, но и анализировать свойства прозрачной среды, рассеивающей и поглощающей свет.
  • Разновидностью атмосферных лидаров являются доплеровские лидары, определяющие направление и скорость перемещения воздушных потоков в различных слоях атмосферы.

Устоявшийся перевод LIDAR как «лазерный радар» не вполне корректен, так как в системах ближнего радиуса действия (например, предназначенных для работы в помещениях), главные свойства лазера: когерентность, высокие плотность и мгновенная мощность излучения — не востребованы; излучателями света в таких системах могут служить обычные светодиоды. Однако в основных сферах применения технологии (метеорология, геодезия и картография) с радиусами действия от сотен метров до сотен километров используются только лазеры.

Аббревиатура LIDAR впервые появилась в работе Миддлтона и Спилхауса «Метеорологические инструменты» 1953 года, задолго до изобретения лазеров.[1] Первые лидары использовали в качестве источников света обычные или импульсные лампы со скоростными затворами, формировавшими короткий импульс.[2]

США[править | править код]

В 1963 году в США начались полевые испытания носимого лазерного дальномера XM-23 с мощностью излучения 2,5 Вт и диапазоном измеряемых расстояний 200—9995 м.

[3]. XM-23 был изначально несекретным образцом и стал базовым прибором для гражданских исследователей 1960-х годов.[4] К концу 1960-х годов лазерные дальномеры стали стандартным оборудованием новых танков США (первым образцом, спроектированным с применением лазерных дальномеров, стал M551 Шеридан, запущенный в серию в 1967). Гражданские применения лазерных дальномеров были ограничены лишь высокой стоимостью интегральных схем того времени.

Тогда же, в первой половине 1960-х годов, начались опыты по применению лидара с лазерными излучателями для исследования атмосферы[5].

В 1969 году лазерный дальномер и мишень, установленная на Аполлоне-11, применялся для измерения расстояния от Земли до Луны. Четыре мишени, доставленные на Луну тремя «Аполлонами» и «Луноходом-2», и по сей день используются для наблюдения за орбитой Луны

[6][7].

В течение 1970-х годов, с одной стороны, отлаживалась технология лазерных дальномеров и компактных полупроводниковых лазеров, а с другой — были начаты исследования рассеяния лазерного луча в атмосфере. К началу 1980-х годов эти исследования стали настолько известными в академических кругах США, что аббревиатура LIDAR стала именем нарицательным — lidar, что зафиксировал словарь Уэбстера 1985 года.[2] В те же годы лазерные дальномеры достигли стадии зрелой технологии (по крайней мере, в военных приложениях) и выделились в отдельную от лидаров отрасль техники[8].

СССР[править | править код]

Эксперименты по лазерной локации Луны в СССР начались в 1963 году, а с 1973 года велись систематические наблюдения всех пяти расположенных к тому времени на Луне уголковых отражателей («Лунохода-1», «Лунохода-2», «Аполлона-11», «Аполлона-14», «Аполлона-15»)

[9]:263,267,272. Для лазерной локации искусственных спутников Земли в СССР были запущены спутники с уголковыми отражателями на борту: «Интеркосмос-17» (1977), «Интеркосмос-Болгария-1300» (советско-болгарский, 1981), «Метеор-3» (1985), использовался разработанный советскими учёными лазерный дальномер «Крым»[10]:321,323.

В СССР существовало два семейства лидарных метеорологических приборов, предназначенных для использования на аэродромах (в обоих семействах в качестве источника зондирующего светового потока использовались импульсные лампы):

  • Измерители высоты нижней границы облаков — светолокаторы (в начале 1960-х годов создан прибор ИВО-1, далее в 1970-х годах ИВО-2, РВО-2). Принцип действия светолокатора основан на измерении обратно рассеянного зондирующего импульса в атмосфере.
  • Измерители дальности видимости — трансмиссометры (созданный в конце 1960-х годов прибор РДВ-1, в последующие десятилетия ему на смену пришли РДВ-2, РДВ-3, ФИ-1). Принцип действия трансмиссометра (регистратора прозрачности атмосферы) основан на измерении степени ослабления интенсивности световых импульсов после их прохождения через слой атмосферы, ограниченный длиной базисной линии прибора.
Принцип действия лидара


В отличие от радиоволн, эффективно отражающихся только от достаточно крупных металлических целей, световые волны подвержены рассеянию в любых средах, в том числе в воздухе, поэтому возможно не только определять расстояние до непрозрачных (отражающих свет) дискретных целей, но и фиксировать интенсивность рассеивания света в прозрачных средах. Возвращающийся отражённый сигнал проходит через ту же рассеивающую среду, что и луч от источника, подвергается вторичному рассеиванию, поэтому восстановление действительных параметров распределённой оптической среды — достаточно сложная задача, решаемая как аналитическими, так и эвристическими методами.

Основные различия в конструкциях и принципах действия современных лидаров заключаются в модулях формирования развертки. Развертка может формироваться как механическими методами (с помощью вращающихся зеркал или с помощью движения микроэлектромеханических систем), так и с помощью фазированной антенной решетки[11].

Излучатель[править | править код]

Принцип действия лидара Длины волн, излучаемые наиболее распространёнными лазерами. Шкала в микрометрах

В абсолютном большинстве конструкций излучателем служит лазер, формирующий короткие импульсы света высокой мгновенной мощности. Периодичность следования импульсов или модулирующая частота выбираются так, чтобы пауза между двумя последовательными импульсами была не меньше, чем время отклика от обнаружимых целей (которые могут физически находиться дальше, чем расчётный радиус действия прибора). Выбор длины волны зависит от функции лазера и требований к безопасности и скрытности прибора; наиболее часто применяются Nd:YAG-лазеры и длины волн (в нанометрах):

  • 1550 нм — инфракрасное излучение, невидимое ни глазу человека, ни типичным приборам ночного видения. Глаз не способен сфокусировать эти волны на поверхности сетчатки, поэтому травматический порог для волны 1550 существенно выше, чем для более коротких волн. Однако риск повреждения глаз на деле выше, чем у излучателей видимого света — так как глаз не реагирует на ИК излучение, то не срабатывает и естественный защитный рефлекс человека
  • 1064 нм — ближнее инфракрасное излучение неодимовых и иттербиевых лазеров, невидимое глазу, но обнаружимое приборами ночного видения
  • 532 нм — зелёное излучение неодимового лазера, эффективно «пробивающее» массы воды
  • 355 нм — ближнее ультрафиолетовое излучение

Также возможно использование (см. Промышленные и сервисные роботы) вместо коротких импульсов непрерывной амплитудной модуляции излучения переменным напряжением.

Системы формирования сканирующего паттерна[править | править код]

Большинство современных лидаров используют цилиндрическую развертку. Этот тип развертки наиболее просто формируется и прост в дальнейшей обработке. Однако, у него есть недостатки. Например, при использовании цилиндрической развертки есть вероятность пропустить узкие горизонтальные объекты (такие как шлагбаум). Чаще всего эта проблема решается применением дополнительного лидара с цилиндрической разверткой, но ориентированного перпендикулярно первому лидару.

Помимо цилиндрической развертки существуют лидары с разверткой «розетка» (англ. «Rosette scanning pattern»). Формирование данной развертки происходит сложнее, чем формирование цилиндрической развертки, однако лидары с разверткой «розетка» не испытывают проблем, описанных выше.

Сканирующая оптика[править | править код]
Принцип действия лидара Два чёрных цилиндра, вынесенные перед бампером — сканирующие лидары беспилотного автомобиля

Простейшие атмосферные лидарные системы не имеют средств наведения и направлены вертикально в зенит.

Для сканирования горизонта в одной плоскости применяются простые сканирующие головки. В них неподвижные излучатель и приёмник также направлены в зенит; под углом 45° к горизонту и линии излучения установлено зеркало, вращающееся вокруг оси излучения. В авиационных установках, где надо сканировать полосу, перпендикулярную направлению полёта самолёта-носителя, ось излучения — горизонтальна. Для синхронизации мотора, вращающего зеркало, и средств обработки принимаемого сигнала используются точные датчики положения ротора, а также неподвижные реперные риски, наносимые на прозрачный кожух сканирующей головки.

Сканирование в двух плоскостях добавляет к этой схеме механизм, поворачивающий зеркало на фиксированный угол с каждым оборотом головки — так формируется цилиндрическая развёртка окружающего мира. При наличии достаточной вычислительной мощности можно использовать жёстко закреплённое зеркало и пучок расходящихся лучей — в такой конструкции один «кадр» формируется за один оборот головки.

Сканирование с помощью MEMS[править | править код]

Производить сканирование можно также и с помощью микроэлектромеханических систем. Такие системы позволяют значительно сократить габариты и повысить надежность изделий.

Активная фазированная антенная решетка[править | править код]

Активная фазированная антенная решетка формирует лазерный луч множеством передающих модулей, каждый из которых генерирует излучение со своими параметрами. Таким образом можно управлять направлением луча. Применение ФАР в лидарах позволяет избавиться от подвижных частей и таким образом продлить срок жизни изделию.

Приём и обработка сигнала[править | править код]

Важную роль играет динамический диапазон приёмного тракта. Например, приёмный тракт новейшей (2006 год) подсистемы машинного зрения MuCAR-3 с динамическим диапазоном 1:10

6 обеспечивает эффективный радиус действия от 2 до 120 м (всего 1:60). Чтобы избежать перегрузки приёмника интенсивной засветкой от рассеивания в «ближней зоне», в системах дальнего радиуса действия применяют высокоскоростные механические затворы, физически блокирующие приёмный оптический канал. В устройствах ближнего радиуса со временем отклика менее микросекунды такой возможности нет.

Современное состояние и перспективы[править | править код]

Исследования атмосферы[править | править код]

Исследования атмосферы стационарными лидарами является наиболее массовой отраслью применения технологии. В мире развёрнуто несколько постоянно действующих исследовательских сетей (межгосударственных и университетских), наблюдающих за атмосферными явлениями.

Измерение высоты нижней границы облаков. В России выпускаются светолокаторы ДВО-2 [12] (с импульсной лампой в качестве источника света), лазерные светолокаторы ДОЛ-2.

[13] и лазерный облакомер для измерения высоты нижней границы облаков и вертикальной видимости [14] Также широко используются лазерные светолокаторы CL31 финского производства.[15]

Измерение дальности видимости. В России производятся трансмиссометры ФИ-3 [16], используются также финские трансмиссометры LT31.[17] В обоих приборах источником излучения является полупроводниковый светодиод.

Измерение скорости и направления воздушных потоков. Теоретическое обоснование применения наземного доплеровского лидара для таких измерений было дано ещё в 1980-е годы.[18] Первые практические разработки использовали неподвижные оптические системы с лучом, направленным вертикально в зенит; в 1990-е годы были предложены технологии, позволяющие доплеровским лидарам сканировать широкий угол обзора.[19] В 2001 Alcatel предложил размещение лидаров на борту спутников, так, что «созвездие» спутников на орбите способно отслеживать движение воздушных масс в рамках целого континента, а в потенциале — на Земле в целом.[20] Лидары активно используются для наблюдений за загрязнением атмосферы. Особый класс дифференциальных лидаров (differential absorption lidar, DIAL), излучающих одновременно свет с разной длиной волны, способен эффективно определять концентрацию отдельных газов, оптические показатели которых зависят от длины волны.

Измерение температуры атмосферы. Разработано и реализовано на практике несколько основных методов измерения профилей температуры.

В первом методе используется резонансное рассеяние на атомах щелочных металлов, в частности, натрия, калия, а также железа[21][22][23]. Облака атомов металлов находятся на высоте 85 — 100 км. Температура измеряется по доплеровскому уширению резонансных линий с помощью зондирования узкополосным подстраиваемым лазером (используются жидкостные лазеры с активным веществом в виде раствора органического красителя). Первые измерения были осуществлены с помощью искусственных натриевых облаков, забрасываемых в атмосферу ракетами. Несмотря на то, что метод ограничен диапазоном высот, на которых присутствуют атомы металла, рассеянный сигнал оказывается относительно большим, и это дает возможность измерять температуру с точностью до 1.5 ˚К[24].

Второй метод — метод рэлеевского рассеяния (Rayleigh lidar), основан на нерезонансном рассеянии света на молекулах воздуха[22][25][26]. Впервые он был применен в 1953 году в опытах с прожекторным зондированием атмосферы[27]. Суть метода заключается в следующем. Если отсутствует аэрозольное рассеяние, то мощность обратно рассеянного сигнала прямо пропорциональна плотности воздуха, из которой можно рассчитать температуру. Разрежение воздуха с высотой позволяет использовать метод рэлеевского рассеяния на высотах не более 90 км. Нижняя граница высоты измерения (около 20-30 км) обусловлена присутствием в граничном слое большого количества аэрозоля, который значительно увеличивает рассеяние, но практически не влияет на плотность воздуха.

Третий метод основан на вращательном рамановском (комбинационном) рассеянии молекулами воздуха (Raman lidar)[22][25]. Когда температура увеличивается, интенсивность переходов с большими квантовыми числами возрастает, в то время как интенсивность линий вращательного рамановского спектра, соответствующих маленьким квантовым числам, уменьшается. Переходы с большими квантовыми числами соответствуют линиям рамановского спектра, расположенным дальше от центральной частоты. Температура определяется при использовании измерений в двух областях спектра с различной температурной зависимостью. Максимальная высота зондирования составляет около 30 км, погрешность измерения менее 1 ˚К до высоты 10 км[28]. Так как в приемнике линия упругого рассеяния подавляется, то измерения можно проводить и в присутствии значительных концентраций аэрозолей.

Измерение температуры может проводиться так же с помощью DIAL лидара[22], но этот метод не получил большого распространения.

Помимо научных целей и метеорологических наблюдений, активно испытываются комплексные системы мониторинга воздушных потоков в районах аэропортов. Среди практических предложений последних лет — системы автоматического управления ветрогенераторами, использующие лидары для определения силы и направления ветра.[29]

Раннее оповещение о лесных пожарах. Лидар, размещённый на возвышенности (на холме или на мачте) и сканирующий горизонт, способен различать аномалии в воздухе, порождённые очагами пожаров. В отличие от пассивных инфракрасных систем, распознающих только тепловые аномалии, лидар выявляет дымы по аномалиям, порождаемым частицами горения, изменению химического состава и прозрачности воздуха и т. п. Технология с радиусом обнаружения дымов в 20 км была впервые заявлена в 1990,[30] активные поиски оптимальных конфигураций систем ведутся по сей день.[31]

Исследования Земли[править | править код]

Вместо установки лидара на земле, где принимаемый отражённый свет будет зашумлён из-за рассеяния в загрязнённых, нижних слоях атмосферы, «атмосферный» лидар может быть поднят в воздух или на орбиту, что существенно улучшает соотношение сигнал-шум и эффективный радиус действия системы. Первый полноценный орбитальный лидар был выведен на орбиту NASA в декабре 1994 года в рамках программы LITE (Lidar In-Space Technology Experiment).[32][33] Двухтонный лидар LITE с метровым зеркальным телескопом, поднятый на высоту 260 км, «рисовал» на земле размытое пятно диаметром 300 м, что было явно недостаточно для эффективного отображения рельефа, и был исключительно «атмосферным».

Особо ценным оказался опыт верификации данных космической съёмки с использованием синхронных данных более 60 наземных лидаров по всему миру.[34]

Первый европейский орбитальный лидар (проект ALADIN) планируется к запуску в 2014 году.[35]

Космическая геодезия. Современные космические проекты разделились на два направления — совершенствование «атмосферных» систем (см. вышеупомянутый проект Alcatel) и геодезические лидары, способные сканировать рельеф земной поверхности с приемлемой разрешающей способностью. Лидары могут применяться как на орбите Земли, так и на орбитах других планет, практический пример тому — бортовой лидар АМС Марс Глобал Сервейор.

Принцип действия лидара Измерения лунной топографии, выполненные с космического аппарата Клементина.

Авиационная геодезия, топография и археология. Национальная океанографическая служба США (NOAA) систематически применяет авиационные лидары для топографической съёмки морского побережья. Сканирующий лидар NOAA имеет разрешение по вертикали 15 см и полосу сканирования (при штатной высоте полёта) 300 м. Привязка к абсолютной высоте производится «от уровня моря» (с поправкой на приливы), к географическим координатам — по сигналам GPS.[36] Географическая служба США (USGS) проводит аналогичные топографической съёмки в Антарктиде, данные съёмок USGS находятся в открытом доступе.[37] В 2007 году USGS начал программу по встраиванию данных лидарной съёмки в национальную базу топографических данных США.[38]

Особое направление, применяемое на практике в сейсмоопасных районах США — дифференциальное измерение высот с целью выявления локальных подвижек земных масс в районе разломов. Ещё в 1996 с помощью лидара была открыта неизвестная ранее зона разлома возле Сиэтла.[39]

Мониторинг лесов и биомассы. Космические (например, GLAS — Geoscience Laser Altimeter System) и авиационные лидары позволяют определить высоту растительности, в частности леса. Таким образом, появляется возможность уточнить распространение лесов, вычислить их параметры (фитомасса, запас древесины) и осуществлять мониторинг за динамикой лесного покрова (например, сведение лесов в тропиках).

Воздушное лазерное сканирование местности позволяет получать данные о реальной поверхности земли исключая искажения от лесных массивов, строении и т. д., также позволяет выявлять неглубоко расположенные археологические объекты культурного слоя[40][41][42]. К примеру, таким образом были обнаружены руины бывших обширных жилых кварталов в джунглях вокруг храма Ангкор-Ват занимающие более 1 000 км²[43].

Строительство и горное дело[править | править код]

Принцип действия лидара «Строительный» лидар, предназначенный для дистанционных трёхмерных обмеров зданий. Видны вращающаяся головка, обеспечивающая сканирование по горизонтали, и наклонное зеркало, сканирующее в вертикальной плоскости

Лидары, сканирующие неподвижные объекты (здания, городской ландшафт, открытые горные выработки), относительно дёшевы: так как объект неподвижен, то особого быстродействия от системы обработки сигнала не требуется, а сам цикл обмера может занимать достаточно долгое время (минуты). Так же, как в своё время падала стоимость лазерных дальномеров и уровней, применяемых в строительстве, следует ожидать дальнейшего снижения цен на строительные и горные лидары, — падение цен ограничено лишь стоимостью прецизионной сканирующей оптики. Типичные отрасли применения:

Маркшейдерское дело — обмеры открытых горных выработок, построение трёхмерных моделей подземных горных пластов (в том числе в связке с сейсмографическими инструментами).

Строительство — обмеры зданий, контроль отклонения плоскостей стен и несущих колонн от вертикали (в том числе в динамике), анализ вибраций стен и остекления. Обмеры котлованов, создание трёхмерных моделей стройплощадок для оценки объёмов земляных работ.

Архитектура — построение трёхмерных моделей городской среды для оценки влияния предлагаемых новостроек на облик города.

Морские технологии[править | править код]

Измерение глубины моря. Для этой задачи используется дифференциальный лидар авиационного базирования. Красные волны почти полностью отражаются поверхностью моря, тогда как зелёные частично проникают в воду, рассеиваются в ней, и отражаются от морского дна. Технология пока не применяется в гражданской гидрографии из-за высокой погрешности измерений и малого диапазона измеряемых глубин.

Поиск рыбы. Аналогичными средствами можно обнаруживать признаки косяков рыбы в приповерхностных слоях воды. Специалисты американской государственной лаборатории ESRL утверждают, что поиск рыбы лёгкими самолётами, оборудованных лидарами, как минимум на порядок дешевле, чем с судов, оборудованных эхолотами.[44]

Спасение людей на море. В 1999 ВМС США запатентовали конструкцию авиационного лидара, применимого для поиска людей и человеческих тел на поверхности моря;[45] принципиальная новизна этой разработки — в применении оптического маскирования отражённого сигнала, снижающего влияние помех.

Разминирование. Обнаружение мин возможно с помощью лидаров, непосредственно погруженных в воду (например, с буя, буксируемого катером или вертолётом), однако не имеет особых преимуществ по сравнению с активными акустическими системами (сонарами). Запатентованы средства обнаружения мин в приповерхностных слоях воды с помощью бортовых авиационных лидаров, эффективность таких лидаров не известна.

Системы подводного зрения. У истоков подводного применения лидаров на море стояла корпорация Kaman, запатентовавшая работоспособную технологию в 1989 году[46]. Интенсивное (по сравнению с воздушной средой) рассеивание света в воде долгое время ограничивало действие подводных лидаров десятками метров. Импульс лазера способен «пробить» и большие расстояния, но при этом полезный отражённый сигнал оказывается неразличим на фоне паразитной засветки. Kaman преодолела эту проблему с помощью электронных затворов, открывавших оптический путь к CCD-приёмнику только на короткий период ожидаемого отклика. Кроме этого, само изображение цели формировалось методом «вычитания тени», существенно повышавшим радиус действия системы. Kaman применяет метод короткого временного окна и к авиационным системам; в них момент открытия оптического канала задаётся высотомером самолёта-носителя.[47]

В последующие годы Kaman развивало тему лидаров как в направлении повышения радиуса действия и надёжности распознавания образов, так и части новых областей применения. Например, в 1999 запатентовано использование лидаров для установления скоростной подводной связи с беспилотными подводными аппаратами (управляемыми торпедами) по оптическому каналу.[48] В 1992 были предложены индивидуальные лидары для водолазов и аквалангистов.[49] Вероятно, что существенный пласт военно-морских разработок остаётся неизвестным широкой публике.

На транспорте[править | править код]

Определение скорости транспортных средств. В Австралии простейшие лидары используются для определения скорости автомобилей — так же, как и полицейские радары. Оптический «радар» существенно компактнее традиционного, однако менее надёжен в определении скорости современных легковых автомобилей: отражения от наклонных плоскостей сложной формы «запутывают» лидар.

Системы активной безопасности.

Ambox outdated serious.svg

Информация в этом разделе устарела.

Вы можете помочь проекту, обновив его и убрав после этого данный шаблон.
«Люстра» из пяти сканирующих лидаров на крыше Stanley — беспилотного автомобиля, победителя DARPA Grand Challenge 2005 года

Беспилотные транспортные средства. В 1987—1995 годах в ходе проекта EUREKA Prometheus, стоившего Европейскому союзу более 1 млрд долларов, были выработаны первые практические разработки беспилотных автомобилей. Наиболее известны прототип, VaMP (разработчик — Университет бундесвера в Мюнхене) не использовал лидары из-за недостатка вычислительной мощности тогдашних процессоров. Новейшая их разработка, MuCAR-3 (2006), использует единственный лидар кругового обзора, поднятый высоко над крышей машины, наравне с направленной мультифокальной камерой обзора вперёд и инерциальной навигационной системой.[50] Лидар MuCAR-3 используется подсистемой выбора оптимальной траектории на пересечённой местности, он даёт угловое разрешение в 0,01° при динамическом диапазоне оптического приёмника 1:106, что даёт эффективный радиус обзора 120 м. Для достижения приемлемой скорости сканирования используется пучок из 64 расходящихся лазерных лучей, поэтому один полный «кадр» требует единственного оборота вращающегося зеркала.[50]

С 2003 года правительство США через агентство передовых военных разработок DARPA финансирует разработку и соревнование автомобилей-роботов. Ежегодно проводятся гонки DARPA Grand Challenge; в гонке 2005 года победила машина из Стэнфорда, в основе системы зрения которой — пять лидаров направленного обзора.

Приспособление от Apple с названием Project Titan для портирования функции автопилота на любой автомобиль было замечено на улицах в октябре 2017. Для тестирования автопилота Apple выбрала автомобиль Lexus RX. На его крышу установили устройство с радаром и 12 лидарами, которые помогают системе изучать окружение.

Системы автоматической стыковки. Канадская компания Optech разрабатывает и производит системы для автоматической стыковки на орбите, основанные на лидарах.[51]

Промышленные и сервисные роботы[править | править код]

Системы машинного зрения ближнего радиуса действия для роботов, основанные на сканирующем лидаре IBM, формируют цилиндрическую развёртку с углом охвата горизонта 360° и вертикальным углом зрения до +30..-30°. Собственно дальномер, установленный внутри сканирующей оптической головки, работает на постоянном излучении малой мощности, модулированном несущей частотой порядка 10 МГц. Расстояние до целей (при несущей 10 МГц — не более 15 м) пропорционально сдвигу фаз между опорным генератором, модулирующим источник света, и ответным сигналом. Лидар IBМ использует простой аналоговый фазовый дискриминатор непрерывного действия и имеет высокую угловую разрешающую способность, на практике ограниченную только быстродействием процессора, обрабатывающего трёхмерную «картинку» лидара, и системы автоматического регулирования уровня сигнала на выходе приёмника (быстрые АРУ вносят в принимаемый сигнал фазовые искажения, медленные — сужают динамический диапазон). В 1990—1994 подобные лидары испытывались в сервисных роботах Джозефа Энгельбергера,[52] однако от использования лидара в серийных изделиях тогда отказались в пользу дешёвых ультразвуковых датчиков.

Разные варианты расшифровки акронима LIDAR[править | править код]

  • Laser Induced Differential Absorption Radar (ACAE)
  • Laser Induced Direction and Range System (BAJR)
  • LASER Infrared RADAR (IEEE)
  • LASER Intensity Direction and Ranging (IEEE)
  • Light Detection and Range (SAUO)
  • Light Detection and Ranging
  • Light Detection and Ranging Instrument (SAUO)
  • Light Intensity Detection and Ranging (NOAA)
  1. ↑ Middleton, W. E. K, and Spilhaus, A. F., Meteorological instruments, University of Toronto, 3rd ed. 1953
  2. 1 2 Англ. Американское метеорологическое общество. Музей лидаров (неопр.) (недоступная ссылка). Дата обращения 27 декабря 2007. Архивировано 27 апреля 2017 года.
  3. ↑ Marcus, I. R., Rangemeter for XM23 Rangefinder, U. S. DoD report of 17/02/1964,
  4. ↑ См., например, Deitz, Paul H., Atmospheric Effects on the Beam Propagation of the XM-23 Laser Rangefinder, Laser Range Instrumentation, SPIE Proceedings Vol. 11. Bellingham, WA: Society for Photo-Optical Instrumentation Engineers, 1967., p.35
  5. ↑ R. T. H. Collis, Lidar: A new atmospheric probe, Quarterly Journal of the Royal Meteorological Society, Volume 92, Issue 392, Pages 220—230, 1966
  6. ↑ Apollo Laser Ranging Experiments Yield Results. From LPI Bulletin, No. 72, NASA, August, 1994 [1]
  7. ↑ Lunar Geophysics, Geodesy, and Dynamics by James Williams Jean Dickey in 13th International Workshop on Laser Ranging, October 7-11, 2002, Washington, D. C.
  8. ↑ Практическая и теоретическая сторона разработок 1980-х годов зафиксирована в: Jean Rueger. Electronic Distance Measurement: An Introduction, Springer, 1990, 4th edition 1996, ISBN 978-3-540-61159-2
  9. Басов Н. Г., Кокурин Ю. Л. Лазерная локация Луны // Наука и человечество, 1986. — М.: Знание, 1986. — С. 262—277.
  10. Георгиев Н. И., Нойберт Р., Татевян С. К., Хайретдинов К. А. Лазерные спутниковые дальномеры // Наука и человечество, 1989. — М.: Знание, 1989. — С. 314—327.
  11. Таисия Филиппова. Точки в пространстве (неопр.). nplus1.ru. Дата обращения 22 января 2019.
  12. ↑ Датчик высоты облаков ДВО-2 (неопр.) (недоступная ссылка). Дата обращения 3 мая 2013. Архивировано 5 марта 2016 года.
  13. ↑ Датчик облаков лазерный ДОЛ-2
  14. ↑ Облакомеры (рус.). www.lsystems.ru. Дата обращения 20 августа 2018.
  15. ↑ Измерители высоты облаков CL31
  16. ↑ Измеритель дальности видимости ФИ-3
  17. ↑ Трансмиссометры LT31
  18. ↑ Laser Doppler Velocimetry Applied to the Measurement of Local and Global Wind, J. M Vaughan and P. A. Forrester, Wind Engineering, Vol. 13 No. 1 1989
  19. ↑ U.S. Patent 5 724 125
  20. ↑ U.S. Patent 6 634 600
  21. ↑ Захаров В. М. Метеорологическая лазерная локация / В. М. Захаров, О. К. Костко. — Ленинград: Гидрометеоиздат, 1977. — 222 с.
  22. 1 2 3 4 Зуев В. Е. Дистанционное оптическое зондирование атмосферы / В. Е. Зуев, В. В. Зуев. — СПб.: Гидрометеоиздат, 1992. — 232 с.
  23. ↑ Кащеев Б. Л. Дистанционные методы и средства исследования процессов в атмосфере Земли / Под общ. ред. Б. Л. Кащеева, Е. Г. Прошкина, М. Ф. Лагутина. — Харьков: Харьк. нац. ун-т радиоэлектроники; Бизнес Информ, 2002. — 426 с.
  24. ↑ Lidar measurements taken with a large-aperture liquid mirror. 2. Sodium resonance-fluorescence system / P.S. Argall, O. N. Vassiliev, R. J. Sica, and et al// Applied Optics. — 2000. — Vol. 39, No. 15. — P. 2393—2400.
  25. 1 2 Лазерный контроль атмосферы / Под ред. Э. Д. Хинкли. — М.: Мир, 1979. — 416 с.
  26. ↑ Behrendt A. Combined temperature lidar for measurements in the troposphere, stratosphere, and mesosphere / A. Behrendt, T. Nakamura, T. Tsuda // Applied optics. — 2004. — Vol. 43, No 14. — P. 2930—2939.
  27. ↑ Lidar: range-resolved optical remote sensing of the atmosphere series, Springer series in optical sciences, vol. 102 / C. Weitkamp (Ed.). — New York: Springer, 2005. — 460 p.
  28. ↑ Behrendt A. Combined Raman lidar for the measurement of atmospheric temperature, water vapor, particle extinction coefficient, and particle backscatter coefficient // Applied Optics. — 2002. — Vol. 41, No 36. — P. 7657 — 7666.
  29. ↑ U.S. Patent 7 281 891
  30. ↑ U.S. Patent 4 893 026
  31. ↑ U.S. Patent 7 164 468
  32. ↑ NASA, октябрь 1994
  33. ↑ NASA, официальный сайт программы LITE
  34. ↑ NASA, официальный сайт программы LITE, карта наземных партнёров
  35. ↑ ADM-Aeolus
  36. ↑ Официальный сайт центра береговых работ NOAA (неопр.) (недоступная ссылка). Дата обращения 30 декабря 2007. Архивировано 14 декабря 2007 года.
  37. ↑ USGS, база данных лидарной топосъёмки
  38. ↑ USGS, национальная база данных высот по США (неопр.) (недоступная ссылка). Дата обращения 10 марта 2006. Архивировано 10 марта 2006 года.
  39. ↑ Blakely, R.J., Wells, R.E., and Weaver, C.S., 1999, Puget Sound aeromagnetic maps and data, U.S. Geological Survey Open-File Report 99—514, [2] Архивная копия от 20 декабря 2007 на Wayback Machine
  40. ↑ Технологии лазерного сканирования Земли открывают новые возможности / Статья от 02.02.2015 г. на innotechnews.com.
  41. ↑ Воздушное лазерное сканирование и цифровая аэрофотосъёмка / Статья на «АртГео».
  42. ↑ Лазерные снимки раскрывают ужасы Перовой мировой войны / Фоторепортаж на news.mail.ru.
  43. ↑ Затерянный храм в джунглях Ангкор-Ват — Камбоджа / Документальный фильм «Discovery Channel» из серии «Взрывая историю» (на видео 12:05 — 16:10 минуты).
  44. ↑ Сайт ESRL (англ.)
  45. ↑ U.S. Patent 5 989 087
  46. ↑ U.S. Patent 4 862 257
  47. ↑ U.S. Patent 4 964 721
  48. ↑ U.S. Patent 5 442 358
  49. ↑ U.S. Patent 5 353 054
  50. 1 2 The Cognitive Autonomous Vehicles of UniBwM: VaMors, VaMP, MuCAR-3 (недоступная ссылка) // Universitaet der Bundeswehr Muenchen 2004
  51. ↑ Optech, официальный сайт (неопр.) (недоступная ссылка). Дата обращения 30 декабря 2007. Архивировано 13 октября 2006 года.
  52. ↑ Status report, Advanced Technology Program, National Institute of Standards and Technologies, 1995 [3] Архивная копия от 7 декабря 2008 на Wayback Machine [4] Архивная копия от 16 сентября 2008 на Wayback Machine

Да будет свет… лидара


Как концепция, лидар уже насчитывает несколько десятилетий. Впрочем, интерес к этой технологии в последние годы резко вырос, поскольку сенсоры становятся меньше, усложняются, а сфера применения продуктов с технологией лидара всё больше расширяется.

Слово лидар представляет собой транслитерацию LIDAR (Light Detection and Ranging — световая система обнаружения и измерения дальности). Это технология получения и обработки информации об удаленных объектах с помощью активных оптических систем, использующих явления отражения света и его рассеяния в прозрачных и полупрозрачных средах. Лидар как прибор подобен радару, поэтому его применение — это наблюдение и обнаружение, но вместо радиоволн как в радаре в нем используется свет, генерируемый в подавляющем большинстве случаев лазером. Термин лидар зачастую используется равноправно с термином ладар, который означает laser detection and ranging (лазерное обнаружение и измерение дальности), хотя, по мнению Джо Бака, руководителя исследовательских работ в Coherent Technologies, входящего в дивизион космических систем компании Lockheed Martin, эти две концепции с технической точки зрения различны. «Когда вы смотрите на что-то, что может рассматриваться как мягкий объект, например твердые частицы или аэрозоль в воздухе, специалисты стремятся использовать лидар, когда говорят об обнаружении этих объектов. Когда вы смотрите на плотные, твердые объекты, например автомобиль или дерево, тогда вы склоняетесь к термину ладар». Чуть подробнее о лидаре с научной точки зрения смотрите раздел «Лидар: как это работает».

«Лидар был предметом исследований в течение многих десятилетий с момента своего появления в начале 60-х годов», — продолжил Бак. Впрочем, интерес к нему заметно вырос с начала этого столетия благодаря, прежде всего, техническому прогрессу. Он привел в качестве примера визуализацию с помощью синтезированной апертуры. Чем больше телескоп, тем более высокое разрешение объекта может быть получено. Если вам необходимо чрезвычайно высокое разрешение, тогда может понадобиться гораздо более крупная оптическая система, что может быть не очень удобным с практической точки зрения. Визуализация при помощи синтезированной апертуры решает эту проблему за счет использования движущейся платформы и обработки сигналов с целью получения действительной апертуры, которая может гораздо больше физической апертуры. Радиолокаторы с синтезированной апертурой (РСА) используются уже много десятилетий. Однако, только в начале 2000-х начались практические демонстрации формирования оптических изображений с синтезированием апертуры, несмотря на то, что лазеры уже широко использовались в то время. «Реально понадобилось больше времени для разработки оптических источников, которые имели бы достаточную стабильность в широком диапазоне регулировки… Совершенствование материалов, источников света и детекторов (используемых в лидарах) продолжается. Вы не просто обладаете способностью проводить теперь эти измерения, вы способны выполнять их в небольших блоках, что делает системы практичными касательно размеров, веса и энергопотребления».


По данным компании Lockheed Martin, интерес к лидару возрос в начале этого столетия благодаря, конечно же, достижениям в области технологий. На фото система WindTracer компании Lockheed Martin на страже аэропорта Мюнхена

Также становится проще и практичнее собирать данные от лидара (или информацию, собранную лидаром). Традиционно она собиралась с сенсоров летательных аппаратов, говорит Ник Розенгартен, руководитель Geospatial Exploitation Products Group в компании ВАЕ Systems. Впрочем, сегодня сенсоры могут быть установлены на наземных транспортных средствах или даже в заплечных рюкзаках, что подразумевает сбор данных человеком. «Это открывает целый ряд возможностей, данные теперь могут собираться как в помещениях, так и на открытом воздухе», — пояснил Розенгартен. Руководитель дивизиона геопространственных решений в компании Textron Systems Мэт Моррис утверждает, что «лидар представляет собой реально удивительный массив данных, поскольку он предоставляет обширнейшую детализацию поверхности Земли. Он дает гораздо более детализированную и, если можно так выразиться, более оттеночную картинку, чем технология цифровых данных топографических высот DTED (Digital Terrain Elevation Data), которая предоставляет информацию касательно высоты земной поверхности в определенных точках. Возможно, одним из самых мощных сценариев использования, о котором я слышал от наших военных заказчиков, является сценарий развертывания в незнакомой местности, ведь им необходимо знать, куда им предстоит идти… подняться на крышу или перелезть изгородь. Данные DTED не позволяют вам видеть это. Вы не увидите даже зданий».

Моррис отметил, что даже некоторые традиционные данные о высотах точек рельефа местности с высоким разрешением не позволят вам увидеть эти элементы. А вот лидар позволяет это сделать из-за своего «шага позиций» — термин, описывающий дистанцию между позициями, которые могут быть точно показаны в массиве данных. В случае с лидаром «шаг позиций» может быть уменьшен до сантиметров, «поэтому вы можете точно узнать высоту крыши здания или высоту стены или высоту дерева. Это реально повышает уровень трехмерной (3D) ситуационной осведомленности». Кроме того, стоимость сенсоров лидар снижается, как и их размеры, что делает их более доступными. «Десять лет назад сенсорные системы лидаров были очень большими и очень дорогими. Они действительно имели высокое энергопотребление. Но по мере своего развития, совершенствования технологий, платформы становились значительно меньше, снижалось энергопотребление, а качество генерируемых ими данных повысилось».


Городской ландшафт, сгенерированный программным инструментом Lidar Analyst компании Textron. Он позволяет изучать местность, извлекать 3D ландшафты и показывать информацию в программах 3D визуализации
Серия снимков лидара, сделанная с помощью приложения SOCET GXP от ВАЕ Systems. Монтирование мозаики (сбор последовательных снимков) может быть выполнено с данными лидара вне зависимости от того, как они были получены

Моррис сказал, что основное применение лидара в военной области — это 3D планирование и отработка боевых задач. Например, продукт Lidar Analyst его компании для моделирования условий полетов позволяет пользователям принимать большие объемы данных и «быстро генерировать эти 3D модели, затем они могут очень точно планировать свои задачи». То же самое верно и для наземных операций. Моррис пояснил: «Наш продукт используется для планирования путей входа и выхода в район цели, а так как исходные данные имеют высокое разрешение, то можно проводить очень точный анализ обстановки в пределах прямой видимости».

Наряду с Lidar Analyst компания Textron разработала RemoteView — программный продукт анализа изображений, заказчиками которого являются американские военные и разведывательные структуры. Программное обеспечение RemoteView может использовать различные источники данных, в том числе данные с лидара. Компания BAE Systems также предоставляет программное обеспечение (ПО) для геопространственного анализа, ее флагманским продуктом здесь является SOCET GXP, который обеспечивает множество возможностей, включая использование данных лидара. Кроме того, как пояснил Розенгартен, компания разработала технологию GXP Xplorer, которая представляет собой приложение управления данными. Эти технологии вполне подходят для военного применения. Розенгартен, например, упомянул об инструменте для расчета посадочной зоны вертолета, который входит в состав ПО SOCET GXP. «Он может брать данные лидара и предоставляет пользователям информацию о зонах на земле, которых может быть достаточно для посадки вертолета». Например, он может подсказать им, есть ли вертикальные препятствия на пути, например, деревья: «Люди могут использовать этот инструмент для определения зон, которые могут быть лучше всего подходить в качестве эвакуационного пункта во время гуманитарных кризисов». Розенгартен также подчеркнул потенциал метода «монтирование мозаикой», когда множественные массивы данных лидара собираются с конкретной зоны и «сшиваются» друг с другом. Это стало возможным в связи с «повышенной точностью метаданных лидарных сенсоров в комбинации с таким ПО, как например, приложение SOCET GXP от BAE Systems, которое может превратить метаданные в точные зоны на земле, рассчитанные с помощью геопространственных данных. Процесс основывается на данных лидара и не зависит от того, как эти данные собраны».


Компания Lockheed Martin видит возможное военное применение для своей технологии WindTracer. Это коммерческий продукт, в котором используется лидар для измерения ветрового сдвига в аэропортах. Подобная технология может быть использована в военной сфере для повышения точности выброски с воздуха. На фото система WindTracer в аэропорту Дубая

Как это работает: лидар

Лидар работает, подсвечивая цель светом. В лидаре может использоваться свет видимого, ультрафиолетового или ближнего инфракрасного диапазонов. Принцип действия лидара прост. Объект (поверхность) освещается коротким световым импульсом, измеряется время, через которое сигнал вернется к источнику. Лидар запускает быстрые короткие импульсы лазерного излучения на объект (поверхность) с частотой до 150000 импульсов в секунду. Датчик на приборе измеряет промежуток времени между передачей светового импульса и его отражением, исходя из постоянной скорости света равной 299792 км/с. Измеряя этот промежуток времени можно вычислить дистанцию между лидаром и отдельной частью объекта и, следовательно, построить изображение объекта на основе его положения относительно лидара.

Сдвиг ветра

Тем временем господин Бак указал на возможное военное применение технологии WindTracer от Lockheed Martin. Коммерческая технология WindTracer использует лидар для измерения ветрового сдвига в аэропортах. Такой же процесс может использоваться в военной сфере, например, для точной выброски с воздуха. «Вам необходимо сбросить запасы с достаточно большой высоты, для этого вы складываете их на поддоны и сбрасываете с парашюта. А теперь посмотрим, где они приземлятся? Вы можете попробовать и предсказать, куда они улетят, но проблема состоит в том, что пока вы снижаетесь, ветровой сдвиг на разных высотах меняет свое направление, — пояснил он. — И как вы после этого предскажите, где поддон приземлится? Если вы можете измерить ветер и оптимизировать траекторию, то вы можете доставить запасы с очень высокой точностью».

Лидар также используется в наземных безэкипажных транспортных средствах. Например, производитель автоматических наземных аппаратов (AHA), компания Roboteam, создал инструмент, названный Top Layer. Это 3D технология картографирования и автономной навигации, которая использует лидар. Top Layer задействует лидар двумя способами, рассказывает руководитель компании Roboteam Шахар Абухазира. Первый позволяет картографирование закрытых пространств в реальном времени. «Иногда видео недостаточно в подземных условиях, например, может быть слишком темно или видимость ухудшилась из-за пыли или дыма, — добавил Абухазира. — Возможности лидара позволяют вам уйти от ситуации с нулевыми ориентацией и пониманием окружающей обстановки… теперь он составляет карту комнаты, он составляет карту тоннеля. Незамедлительно вы можете понять обстановку, даже если вы ничего не видите и даже, если вы не знаете, где вы находитесь».

Второе применение лидара заключается в его автономности, помощи оператору в контролировании более одной системы в любой данный момент. «Один оператор может контролировать один AHA, но есть два других AHA, которые просто отслеживают управляемый человеком аппарат и следуют за ним автоматически», — пояснил он. Подобным же образом солдат может войти в помещение, а АНА просто следует за ним, то есть нет необходимости откладывать в сторону оружие для того, чтобы управлять аппаратом. «Это делает работу простой и интуитивной». Более крупный AHA Probot компании Roboteam также имеет на борту лидар, который помогает проходить ему большие дистанции. «Вы не можете требовать от оператора, чтобы он жал кнопку три дня подряд… вы используете лидарный сенсор для того, чтобы просто следовать за солдатами, или следовать за машиной или даже в автоматическом режиме перемещаться от одного пункта к другому, лидар в этих ситуациях поможет избежать препятствий». Абухазира ожидает в будущем крупных прорывов в этой области. Например, пользователи хотели иметь ситуацию, в которой человек и АНА взаимодействуют подобно двум солдатам. «Вы не контролируете друг друга. Вы смотрите друг на друга, вы зовете друг друга и действуете точно так, как должны действовать. Я полагаю, что в известном смысле мы получим этот уровень общения между людьми и системами. Это будет более эффективно. Я считаю, что лидары ведут нас в этом направлении».


Программный продукт TopLayer компании Roboteam позволяет AHA картографировать закрытые пространства в реальном времени. Порой видеосъемки бывает недостаточно в этих условиях: может быть либо темно, либо видимость недостаточна из-за пыли и дыма

Идем под землю

Абухазира также надеется, что лидарные сенсоры улучшат проведение операций в опасных подземных условиях. Лидарные сенсоры дают дополнительную информацию, выполняя картографирование тоннелей. Кроме того, он заметил, что порой в небольшом и темном тоннеле оператор может даже не понять, что ведет AHA не в том направлении. «Лидарные сенсоры работают как GPS в реальном времени и делают процесс похожим на видеоигру. Вы можете видеть вашу систему в тоннеле, вы знаете, куда движетесь в реальном времени».

Стоить отметить, что лидарные сенсоры это еще один источник данных и не должны рассматриваться как прямая замена радара. Бак заметил, что имеются большая разница в длине волн этих двух технологий, которые имеют свои преимущества и недостатки. Зачастую лучшим решением является использование обеих технологий, например, проведение измерения параметров ветра при помощи аэрозольного облака. Более короткие длины волн оптических сенсоров обеспечивают лучшее определение направления по сравнению с более длинными волнами радиочастотного сенсора (радара). Впрочем, свойства пропускания атмосферы очень разнятся для двух типов сенсоров. «Радар способен проходить сквозь облака определенных типов, с которыми лидару было бы сложно справиться. Но в тумане, например, лидар может показать себя чуть лучше радара».

Розенгартен сказал, что сочетание лидара с другими источниками света, например, панхроматическими данными (когда изображение строится с использованием широкого диапазона световых волн) даст полную картинку исследуемой зоны. Хорошим примером здесь является определение посадочной площадки для вертолета. Лидар может просканировать зону и сказать, что она имеет нулевой уклон, не принимая во внимание, что фактически он смотрит на озеро. Этот тип информации может быть получен за счет использования других источников света. Розенгартен считает, что промышленность, в конечном счете, займется слиянием технологий, сведением вместе различных источников визуальных и иных световых данных. «Она найдет способы свести все данные под одним зонтиком… Получение точной и исчерпывающей информации — это не просто использование данных лидара, а комплексная задача с привлечением всех доступных технологий».

По материалам сайтов:
www.nationaldefensemagazine.org
www.lockheedmartin.com
www.baesystems.com
www.textron.com
www.robo-team.com
www.robotshop.com
www.Geo-Plus.com
www.nplus1.ru

Как десяток ведущих компаний пытаются создать мощный и недорогой лидар / Habr

Лидар совершенно необходим для робомобилей – и вот, как работают некоторые из ведущих датчиков


Лидар, или световой радар, это технология, критически важная для создания робомобилей. Датчики предоставляют компьютеру трёхмерное облако точек, обозначающее окружающее автомобиль пространство, а его концепт помог командам выиграть конкурс DARPA Urban Challenge в 2007 году. С тех пор системы лидаров стали стандартом для робомобилей.

В последние годы были созданы десятки стартапов, работающих с лидарами, и соревнующимися с лидером индустрии Velodyne. Все они наобещали более приемлемые цены и улучшенную эффективность работы. В 2018 году журнал Ars уже делал подборку основных тенденций в индустрии лидаров, и описал, почему эксперты ожидали появления улучшенных и менее дорогих систем в ближайшие несколько лет. В той статье не было подробностей по поводу самих компаний – в основном потому, что они держали информацию о работе своей технологии в тайне.

Но за последний год я получал непрерывный поток рекламы, исходящей от разработчиков лидаров, и побеседовал с большим количеством их представителей. Журнал Ars находится на связи директорами, по меньшей мере, восьми таких компаний, а также с компаниями, занимающимися анализом индустрии или их клиентами. Всё это общение позволило составить неплохое представление не только о тенденциях индустрии лидаров, но и о технологиях и бизнес-тратегиях отдельных компаний.

Сегодня существует три основных отличия лидаров друг от друга. После описания этих возможностей будет легче понять технологии девяти ведущих компаний, разрабатывающих лидары.

Чтобы не раздувать зря статью, мы опишем независимые компании, которые в основном занимаются лидарами. Поэтому мы не будем описывать собственную технологию лидаров от Waymo, стартапы, работающие с лидарами, которые купили себе GM и Ford в 2017 году, или попытки разработки лидаров от более крупных компаний, таких, как Valeo (сделавшая лидар для моделей Audi 2018 и 2019 годов A7 и A8), Pioneer или Continental. Сложно выпытать у этих крупных компаний подробности об их технологиях, но и без них есть, что описать.

Три крупных фактора, отличающих лидары друг от друга


Базовая идея лидара проста: датчик испускает лазерные лучи в разных направлениях, и ждёт, пока их отражения вернутся. Скорость света известна, и время в пути туда и обратно даёт точную оценку расстояния.

И хотя базовая идея проста, детали усложняют всё очень быстро. Каждый изготовитель лидаров должен принять три базовых решения: как направлять лазер в разные стороны, как измерять время на путь туда и обратно, и свет какой частоты использовать. Мы рассмотрим каждое из них по очереди.

Технология управления лучом


Большинство ведущих лидаров используют один из четырёх методов направления лазерных лучей в разные стороны (две компании, Baraja и Cepton, сообщили, что используют другие технологии, которые они не объяснили):
  • Вращающийся лидар. Velodyne создала современную лидарную индустрию в 2007, представив лидар, в котором было размещено 64 лазера по вертикали, и вся эта штуковина вращалась со скоростью в несколько оборотов в секунду. Датчики из вышего сегмента от Velodyne до сих пор используют такую технологию, и, по крайней мере, один из конкурентов, Ouster, поступил так же. Преимущества такого подхода – покрытие на 360 градусов, но критики ставят вопросы о том, можно ли сделать дешёвый и надёжный вращающийся лидар, подходящий для массового рынка.
  • Механический сканирующий лидар использует зеркало, перенаправляя единственный лазерный луч в разных направлениях. Некоторые из компаний используют подход под названием «микроэлектромеханическая система» (МЭМС) для управления зеркалом.
  • Активная фазированная антенная решетка использует ряд излучателей, способных изменять направление лазерного луча, подстраивая относительную фазу сигнала между соседними передатчиками. Мы подробно опишем эту технологию в секции про Quanergy.
  • Лидар на основе вспышек подсвечивает всю область сразу. Существующие технологии используют один широкоугольный лазер. Технология испытывает трудности с большими расстояниями, поскольку до любой точки доходит лишь малая часть лазерного света. По меньшей мере, одна компания, Ouster, планирует создать многолазерную вспышку, в которой будет массив из тысяч или миллионов лазеров, направленных в разные стороны.

Измерение расстояния


Лидар измеряет время, которое требуется свету для того, чтобы дойти до объекта, и отразиться от него. Есть три простых способа сделать это:
  • Время в пути. Лидар отправляет короткий импульс и измеряет, сколько времени пройдёт до фиксации возвращающегося импульса.
  • Лидар непрерывного излучения с частотной модуляцией (НИЧМ). Отправляет непрерывный луч света, частота которого постоянно меняется во времени. Луч разбивается на два, и один из них отправляется во внешний мир, а потом по возвращению объединяется с другим. Поскольку частота у источника луча меняется непрерывно, разница в пути двух лучей выражается через разность их частот. В результате получается картина интерференции, частота биений которой является функцией от времени в пути (и, следовательно, от расстояния). Этот путь может показаться беспричинно усложнённым, но у него есть парочка преимуществ. Лидар НИЧМ устойчив к интерференции от других лидаров или от Солнца. Лидар НИЧМ может также использовать допплеровское смещение для измерения скорости объектов, а не только расстояния до них.
  • Лидар непрерывного излучения с амплитудной модуляцией (НИАМ) можно рассматривать, как компромисс между двумя предыдущими вариантами. Такой лидар, как и простой датчик, измеряющий время в пути, отправляет сигнал, а потом измеряет время, которое у него ушло на то, чтобы отразиться и вернуться. Но если простые системы отправляют один импульс, лидар НИАМ отправляет сложную схему (псевдослучайный поток цифровых нулей и единиц). Сторонники подхода говорят, что благодаря этому лидар НИАМ более устойчив к интерференции.

Длина волны лазера


Описанные в данной статье лидары используют один из трёх вариантов длин волн: 850, 905 или 1550 нм.

Этот выбор имеет значение по двум причинам. Одна из них – безопасность глаз. Жидкость внутри глаза прозрачна для света с длиной волны 850 и 905 нм, что позволяет свету дойти до сетчатки. Если лазер будет слишком мощным, он может причинить глазу непоправимый вред.

С другой стороны, глаз непрозрачен для излучения с длиной волны 1550 нм, что позволяет таким лидарам работать на большей мощности, не вредя сетчатке. Увеличение мощности позволяет увеличивать дальность действия.

Так почему же все не используют лазеры с длиной волны 1550 нм в лидарах? Детекторы, работающие с частотами 850 и 905 нм, можно создать на основе недорогих и распространённых кремниевых технологий. Для создания лидара с длиной волны 1550 нм требуется использовать экзотические и дорогие материалы, такие, как арсенид галлия-индия.

И хотя лазеры на 1550 нм могут работать с большей мощностью, не представляя угрозы для глаз, такие уровни мощности могут приводить к другим проблемам. На выставке CES в Лас-Вегасе в этом году один человек сообщил, что мощный лазер на 1550 нм в лидаре от AEye испортил ему камеру. И, конечно, лазеры большей мощности потребляют больше энергии, что уменьшает дальность хода и энергетическую эффективность машины.

Учтя всё это, давайте рассмотрим десятку ведущих разработчиков лидаров.

Velodyne



Три продукта Velodyne: Alpha Puck, Velarray и Veladome

Управление лучом: вращение.

Измерение расстояний: время в пути.

Длина волны: 905 нм

Velodyne изобрела современный трёхмерный лидар более десяти лет назад, и с тех пор доминирует на этом рынке. Характерные вращающиеся лидары компании часто используются в робомобилях, и компания, скорее всего, останется лидером рынка в 2019. Однако некоторые наблюдатели задаются вопросом, сможет ли компания поддерживать свою лидирующую позицию в последующие годы.

В конце 2017 флагманские лидары Velodyne на 64 лазера продавались по $75 000 за штуку. Velodyne представила новую модель на 128 лазеров, которая, по слухам, будет ещё дороже — $100 000.

Касательно этих цифр представитель Velodyne ответил: «Мы не раскрываем стоимость продукции, однако, озвученные цены характерны для единичных продуктов. В закупках автомобильных масштабов цены существенно ниже, и мы активно поставляем автопроизводителям продукцию по низким ценам».

Velodyne продаёт и менее дорогие лидары, включая 16-лазерную «шайбу», которая в прошлом году продавалась по $4000. Также Velodyne продаёт и твердотельную модель, Velarray. Velodyne говорит, что это система с длиной волны в 905 мм «с проприетарным методом управления лучом без трения». Velodyne ожидает, что в оптовых объёмах эта модель в итоге будет стоить менее $1000. Однако эти лидары не дают такого высокоточного результата, как вращающиеся модели на 64 и 128 лазеров.

Некоторые критики утверждают, что у Velodyne были трудности с производством и качеством продукции.

«Деликатные движущиеся датчики лидара, являющиеся средством к существованию компании, оказалось сложно производить эффективно и с высоким качеством, и они могут быть раздражающе хрупкими при применении в автомобилях», писал недавно журналист Эд Нидермайер, цитируя источники сектора робомобилей.

Представитель компании поспорил с таким отзывом, утверждая, что Velodyne «за годы работы довела науку изготовления этих датчиков в больших количествах до совершенства», и что «было доказано, что они выдерживают жёсткие условия эксплуатации в автомобилях».

Недавно Velodyne подписала лицензионный договор с Veoneer, известной компанией в цепочки поставок автомобильных запчастей. У Veoneer есть большой опыт создания компонентов, удовлетворяющих стандартам качества автомобильных компаний, и у неё могут появиться идеи о внесении изменений в классический дизайн Velodyne с целью улучшения качества и уменьшения цены продукта. Однако им нужно действовать быстро, поскольку целый ряд других компаний уже нацелился на место лидера.

Luminar


Управление лучом: механическое сканирование

Измерение расстояний: время в пути.

Длина волны: 1550 нм

Многие считают Luminar одним из главных соперников Velodyne. Компания занимается этим бизнесом с 2012 года, и в прошлом году начала производство лидаров в больших количествах. Компания утверждает, что качество её продукции находится на высшем уровне.

В частности это происходит благодаря тому, что в Luminar решили использовать лазеры с длиной волны 1550 нм. Использование безопасной для глаз длины волн позволяет Luminar выкручивать мощность лазера, благодаря чему лидар дальше видит. Но лазеры на 1550 нм означают, что Luminar приходится использовать экзотический арсенид галлия-индия для обнаружения вернувшихся импульсов. Это должно быть дорого, но Luminar в прошлом году сообщили нам, что стоимость приёмников в их лидарах составляет всего $3.

В прошлом году в ответ на наши расспросы о Luminar президент компании Velodyne Марта Холл указала нам на серьёзный недостаток лидаров от Luminar – большое энергопотребление. Это особенно важно, поскольку лидары от Luminar представляют собой фиксированные датчики с полем зрения в 120 градусов. Это значит, что для обеспечения просмотра всех 360 градусов потребуется четыре прибора от Luminar (с учётом наложения их полей зрения), вместо всего одного от Velodyne или Ouster. Однако затем в письме представитель Luminar ответил, что последняя версия их лидара значительно уменьшила потребление энергии по сравнению с ранними моделями, и потребляет «на круг примерно 50 Вт».

Также Luminar ничего не сообщает по поводу цен. В прошлом мае директор Luminar Остин Рассел рассказал нам, что их лидар должен будет «подешеветь до нескольких тысяч долларов», чтобы суметь состязаться на потребительском рынке, и что этот вопрос для компании «не является проблемой». Однако из этого следует, что в то время стоимость приборов получалась значительно выше нескольких тысяч.

Luminar опережает многих изготовителей лидаров в области реальных поставок, поскольку начала массовое производство более девяти месяцев назад. За последние 18 месяцев Luminar сумела заключить партнёрские соглашения с компаниями Toyota, Volkswagen и Volvo.

В недавнем интервью Рассел указал на эти сделки, назвав их крупнейшими конкурентными преимуществами компании. Он сказал мне, что крупнейшие компании разрабатывают робомобили на основе лидаров от Luminar, и им дорого обойдётся переход на продукцию конкурентов в будущем.

AEye


Управление лучом: механическое сканирование

Измерение расстояний: время в пути.

Длина волны: 1550 нм

У AEye много общего с Luminar. Она использует механическое сканирующее зеркало для управления лучами. Она использует лазер безопасной для глаз длины волны 1550 нм, позволяя ему работать на больших уровнях энергии. В результате у лидара от AEye впечатляющие характеристики по дальности. AEye говорит, что их лидар может видеть на расстоянии вплоть до 1000 м – это гораздо больше, чем те 200-300 м, которыми хвастаются самые дорогие устройства.

В декабрьском интервью директор AEye Люис Дюссан расхваливал высокоэнергетические импульсы, которые способны выдавать волоконные лазеры лидара AEye. Он сказал, что многие лидары конкурентов основаны на диодных лазерах, «ограниченных мощностью в 100-150 Вт. Волоконные лазеры могут доходить до 100 000 Вт – очень короткий импульс, большое количество сигнала».

Большая энергия позволяет увеличивать расстояние, но у неё есть и свои недостатки. В этом году на выставке CES в Лас-Вегас один человек рассказал журналу Ars, что его дорогая камера оказалась испорченной, когда он сделал фотографию лидара от AEye. Глаза заполнены жидкостью, непроницаемой для волн длиной 1550 нм. А камеры – нет. Видимо, мощный лазер AEye попал на хрупкую матрицу фотокамеры.

В заявлении для журнала Ars компания AEye описала повреждение камеры как проблему, присущую всей индустрии. Но Ангус Пакала, директор конкурирующей компании Ouster, спорит с этим. Он писал: «Наши сенсоры безопасны для глаз и камер. И точка». Luminar сообщила, что «мы провели всесторонние испытания с той же камерой с теми же линзами и с теми же настройками, что были у повреждённой на CES, и не смогли причинить ей вреда» при помощи лидара от Luminar.

Большинство лидаров используют фиксированную схему сканирования. Лидар AEye использует другой подход, который компания называет «подвижным сканированием». Схему сканирования AEye можно настроить программно и менять динамически. Согласно Дюссану, подвижная схема сканирования работает с гибкостью волоконного лазера. «От снимка к снимку можно контролировать энергию импульсов», — сказал он Ars. ПО управляет не только тем, когда произойдёт следующее измерение, но и тем, сколько энергии будет использовано – и, следовательно, какое расстояние будет измерено в следующий раз.

В результате, когда лидар замечает далеко находящийся объект, он может увеличить разрешение сканирования и уровень энергии в данной части изображения, и получить больше точек данных. В итоге может получиться скан с высоким разрешением, который поможет различить пешехода, мотоцикл или габаритный мусор, оставшийся на дороге.

С другой стороны, существует опасность чрезмерной оптимизации. Если лидар будет тратить много времени на сканирование уже распознанных объектов, возникает опасность, что на систематическое сканирование времени останется слишком мало, из-за чего он пропустит другие объекты.

Ouster


Управление лучом: вращение

Измерение расстояний: время в пути.

Длина волны: 850 нм

На первый взгляд, лидар от Ouster выглядит очень похоже на Velodyne. Это вращающиеся системы, измеряющие время импульсов в пути, и обе компании продают приборы с 16, 64 и 128-ю лазерами. И это не совпадение: Ouster специально разрабатывала продукцию так, чтобы её можно было использовать для замены приборов от Velodyne, поскольку многие потенциальные клиенты освоились с их классическим форм-фактором.

Но если вскрыть устройства от Ouster, окажется, что внутри они выглядят совсем не так. Классический дизайн Velodyne, судя по патенту, использует 64 отдельных лазера и 64 отдельных детектора. Ouster же придумала, как упаковать 64 лазера на один чип, а второй их чип содержит 64 датчика, распознающих отражённый свет. Такой интегрированный дизайн может кардинально уменьшить стоимость и сложность производства лидаров.

Самый сложный из лидаров Ouster, поставки которого должны начаться в этом году, это OS-2, 64-лазерный прибор, продающийся по $24 000. Ouster говорит, что его дальность работы сравнима с самыми дорогими лидарами от Velodyne. Ouster также продаёт лидары и с меньшим радиусом действия всего за $3500.

Ouster может запихнуть 64 лазера на чип, используя поверхностно-излучающий лазер с вертикальным резонатором (VCSEL) — в отличие от обычных лазерных диодов, излучающих в плоскости, параллельной поверхности. Поскольку VCSEL излучают перпендикулярно поверхности подложки, много лазеров можно разместить на полупроводниковом кристалле. Технология уже давно используется в таких пользовательских приложениях, как компьютерные мыши, но она всегда считалась недостаточно мощной для использования в лидаре. В Ouster говорят, что придумали, как создать лидар высокой эффективности при помощи VCSEL.

Ouster использует ещё одну полупроводниковую технологию, диоды однофотонного каскада (SPAD), чтобы обнаруживать возвратившийся свет. Как и VCSEL, SPAD можно изготовить при помощи стандартных технологий производства кремниевых чипов, и в один кристалл можно запихнуть много SPAD. Благодаря этому Ouster было довольно несложно перейти с 64-лазерных приборов в прошлом году на 128-лазерные, анонс которых состоялся в январе, а поставки начнутся летом. Компании просто пришлось заменить в старой модели чипы с 64 лазерами и 64 детекторами на новые 128-е чипы.

И обновление с 64 до 128 лазеров – это только начало, утверждает директор Ангус Пакала. Он рассчитывает, что за несколько лет компания представит лидары, в распоряжении которых будут тысячи – а, возможно, и миллионы – лазеров VCSEL и детекторов SPAD.

Пока что Ouster концентрируется на создании одномерных массивов лазеров для использования во вращающемся датчике, похожем на устройства от Velodyne. Но Пакала говорит, что ту же технику можно использовать и для создания двумерных массивов из лазеров и детекторов – наподобие матрицы в фотоаппарате. Это может привести к созданию нового класса лидаров на основе вспышек, где каждый «пиксель» будет обслуживать своей парой лазер-детектор. В результате у лидара будут преимущества вспышки – никаких движущихся частей, возможность воспринять «кадр» сразу и целиком – без жертв дальности обычного лидара.

Суть стратегии Ouster заключается в том, чтобы использовать в своих интересах промышленную базу потребительской электроники, в которой VCSEL уже используются в компьютерных мышках, для дальномеров у камер смартфонов, и в других областях. Пакала утверждает, что VCSEL ещё есть куда улучшать по таким параметрам, как яркость, стоимость и энергоэффективность. А все улучшения технологий VCSEL (и SPAD) будут автоматически работать на руку Ouster.

Blackmore


Управление лучом: механическое сканирование.

Измерение расстояний: непрерывное излучение с частотной модуляцией.

Длина волны: 1550 нм

Как и Ouster, Blackmore надеется использовать в своих целях развёрнутую инфраструктуру полупроводниковой промышленности. Однако её интересует индустрия оптических коммуникаций, а не потребительской электроники.

На первый взгляд, лидары и устройства оптической связи отличаются друг от друга, но на самом деле у них больше общего, чем можно было представить. Они отправляют информацию, закодированную в свете, улавливают свет позже и извлекают информацию из него.

«Оптический слой Blackmore создан на основе стандартных компонентов для оптоволоконной связи», — написано на сайте компании. «Пользуясь наработанными за десятилетия решениями в области оптоволоконной связи, мы с уверенностью заявляем, что наши схемы масштабируемы и надёжны».

Практически во всех других аспектах лидар Blackmore удивительно сильно отличается от продукции компаний Ouster и Velodyne. Вместо вращения на 360 градусов, лидар зафиксирован с полем зрения в 120 градусов по горизонтали и 30 градусов по вертикали. Он использует непрерывное излучение с частотной модуляцией для измерения расстояний, что позволяет измерять и скорость объектов.

Blackmore несколько недель назад представила новый интересный лидар на CES. Первоначальная его стоимость составляет $20 000, и он обладает впечатляющими характеристиками. Компания надеется со временем постепенно снижать стоимость лидара.

Baraja


Управление лучом: спектроскопическое сканирование.

Измерение расстояний: непрерывное излучение с амплитудной модуляцией.

Длина волны: 1550 нм

Baraja – один из самых необычных стартапов, о которых я рассказывал в прошлом году – и один из наиболее таинственных.

У большинства лидаров поле зрения составляет 120 градусов или меньше, что означает необходимость покупать не менее четырёх штук для обеспечения полного покрытия 360 градусов. Это может выйти дорого, а также требует расстановки хрупкой электроники по краям машины, где её очень легко повредить.

Идея Baraja состоит в том, чтобы переместить всю хрупкую электронику в багажник. Находящийся там обработчик сигналов соединяется по оптоволокну с четырьмя дешёвыми и прочными головками датчиков, которые можно разместить снаружи машины.

В интервью прошлым летом директор компании Федерико Колларте сказал мне, что четыре головки датчиков «состоят, по сути, из кремниевого стекла. Они дёшевы, надёжны, хорошо выдерживают стихии. В случае аварии нужно будет просто заменить головку датчика».

Привлекательная идея. Проблема в том, что я не могу сообразить, как она будет работать – и не смог убедить Колларте пояснить мне её в деталях.

Baraja описывает свой лидар как «лидар спектроскопического сканирования», что означает, что лучи лазеров управляются изменением частоты света, проходящего через призму. Просто представить, как можно управлять таким лучом в одном измерении, но сложно понять, как достичь двумерного управления».

Когда я спросил об этом Колларте, он сказал: «Для второго измерения мы используем тот же концепт спектрального сканирования. И у нас ещё есть вспомогательная механическая система».

Он добавил, что эта система не включает в себя ни зеркала, ни вращающиеся лазеры. Он сказал, что она «использует такую же призматическую оптику – этот момент мы всё ещё держим в секрете».

Также Baraja остаётся единственной компанией из тех, с кем мы общались, использующей непрерывное излучение с амплитудной модуляцией для измерения расстояний. Колларте рассказал нам, что одним из преимуществ такого подхода является то, что «для отдельных импульсов не требуется больших энергий». Некоторые оптические компоненты могут повредиться из-за скачков энергии, и их отсутствие даёт инженерам гибкость в использовании более широкого спектра вариантов — что потенциально позволит создать менее дорогую и более надёжную технологию.

Колларте говорит, что Baraja (как и Blackmore) старается «перенести компоненты и технологии из оптических телекоммуникаций», где большая экономия на масштабе позволяет удерживать стоимость продукта на низком уровне. Baraja, судя по всему, находится на ранних этапах коммерциализации, но Колларте говорит, что при производстве сотен тысяч устройств компания рассчитывает снизить их стоимость до «нескольких сотен» долларов.

Quanergy


Управление лучом: Активная фазированная антенная решетка.

Измерение расстояний: время в пути.

Длина волны: 905 нм

Вокруг Quanergy три года назад развернулась сильная шумиха, когда она объявила о создании твердотельного продукта со стоимостью менее $250, которую можно будет достигнуть при масштабном производстве. Но критики говорят, что компания не сумела выполнить свои обещания.

«У Quanergy, судя по всему, с трудом получается заставить датчики работать на нужных дистанциях», — сказал в интервью Сэм Абулсамид, аналитик из компании Navigant.

Quanergy – одна из немногих компаний, делающих лидары по технологии активной фазированной антенной решетки. Как было указано в пояснении к концепции 2017 года:

Фазированная решётка – это ряд передатчиков, способных менять направление электромагнитного луча, подстраивая относительную фазу сигнала от одного передатчика к другому.

Если все передатчики синхронно излучают электромагнитные волны, луч отправится прямо, т.е., перпендикулярно массиву. Чтобы отклонить луч влево, передатчики сдвигают фазу сигнала отправляемого каждой антенной, и сигнал от передатчиков слева оказывается позади сигнала передатчиков справа. Для отклонения луча вправо решётка совершает противоположное действие, сдвигая фазу самых левых элементов вперёд по отношению к правым.

Такая технология десятилетиями использовалась в радарах, где передатчиками служат антенны радаров. Оптические фазированные решётки применяют тот же принцип к свету, упаковывая массив лазеров на достаточно небольшом чипе.

Если бы Quanergy удалось заставить эту технологию хорошо работать, у неё была бы масса преимуществ. При отсутствии движущихся частей твердотельное устройство могло бы быть дешёвым, надёжным и универсальным. Лидар от Quanergy, как и прибор от AEye, настраивается программно и динамически переключается между разрешением и скоростью обновления.

Но у Quanergy нет особенных успехов на рынке. В ноябрьском интервью директор Луэй Эльдада сказал, что «мы проходим нужные этапы, мы идём по графику». Но есть причины сомневаться в этом. К примеру, Ангус Пакала был сооснователем Quanergy до того, как уйти и основать компанию Ouster в 2015-м.

Абульсамид указывает на недавний интерес Quanergy к использованию лидаров в промышленной безопасности – в этой области применения не требуются такие расстояния, как у робомобилей. Эльдада сказал мне, что теперь у Quanergy появился более типичный лидар с механическим наведением, предназначенный для рынка безопасности.

Cepton


Управление лучом: проприетарная технология микродвижений.

Измерение расстояний: время в пути.

Длина волны: 905 нм

Полностью автоматические робомобили – наиболее требовательная область применения лидаров, и пока что я в основном описывал продукты, нацеленные на этот рынок. Но Cepton – пример уважаемого производителя лидаров, в основном нацеленного на использование их технологии в передовых вспомогательных системах для водителей (ADAS). Сегодняшние системы ADAS используют радары и камеры для контроля полосы и динамического круиз-контроля. Но все ждут от автопроизводителей появления лидаров на машинах будущего, которые смогут обеспечить более сложные ADAS-системы.

Проблема в том, что, как мы увидели, лучшие лидары стоят десятки тысяч долларов, и эта ситуация может не поменяться даже при их производстве в промышленных масштабах. Поэтому такие компании, как Cepton, нацеливаются на производство лидаров средней дальности, достаточно доступных для их включения в автомобили, которые будут выпускать уже через несколько лет.

И когда я спросил директора Cepton Джун Пей о лидаре дальнего действия, требуемого для робомобилей, он открестился от этого рынка, сказав, что не думает, что клиенты начнут запрашивать подобные устройства в больших количествах «в обозримом будущем».

Вместо этого Cepton сконцентрировалась на рынке ADAS, где уже начинают заключать сделки на крупные объёмы поставок. Cepton утверждает, что её конкурентным преимуществом является цена.

«Мы – единственная компания, способная продавать лидары дешевле $1000», — сказал Пей. Прошлым летом Cepton объявила о сделке с Koito, японской компанией и одним из крупнейших мировых поставщиков автомобильных фар, по которой та включит их технологию лидаров в дизайн фар. Это значит, что если автопроизводитель решит, что лидар от Cepton устраивает их по всем параметрам, он сможет без проблем добавить такую возможность в свои автомобили.

Пей сказал мне, что технология микродвижения, управляющая лучом, уникальна для этой индустрии. Традиционные МЭМС используют для перенаправления света крохотное механически перемещающееся зеркальце. Но Пей говорит, что Cepton использует «очень проприетарный оптический дизайн, устраняющий зеркальце, но всё равно способный получать картинку высокого разрешения». Он также описал его, как «небольшую вибрационную систему, работающую по принципу динамика» – но отказался раскрывать подробности.

Innoviz


Управление лучом: механическое сканирование.

Измерение расстояний: время в пути.

Длина волны: 905 нм

Innoviz, как и Cepton, в основном концентрируется на сделках большого объёма с автопроизводителями. Она торгует доступными лидарами средней дальности, подходящими для использования в ADAS. И весьма успешно.

В прошлом апреле BMW объявила о планах установить лидар от Innoviz в свои автомобили в 2021 модельном году. Также в этом партнёрстве участвует Magna, известный поставщик, который поможет с логистикой, необходимой для установки готовой запчасти в тысячи автомобилей.

Автопроизводители экспериментируют со многими технологиями лидаров, поэтому многие их изготовители могут похвастать заключением сделок с OEM-производителями. Но сделка BMW выделяет Innoviz на фоне остальных конкурентов – BMW, судя по всему, серьёзно настроена на установку их лидаров в автомобили для продажи, а не просто покупает эти устройства для испытаний на прототипах.

В производстве автомобилей сроки освоения новой продукции весьма велики, поэтому Innoviz будет чем заняться в ближайшие несколько лет, и, конечно, одна заключённая сделка позволит Innoviz заключать новые сделки в будущем. Он полон оптимизма касательно этой сделки».

Сделка с BMW, судя по всему, будет использоваться для реализации ADAS, но у Innoviz есть амбиции и в области робомобилей. В последней своей модели InnovizOne компания хвастается дальностью до 200 метров с объектами с 50% отражающей способностью и полем зрения в 120 градусов.

Как технология LiDAR совершила переворот в картографии и сборе геопространственных данных

Вам необходимо документировать обстоятельства ночной аварии на дороге? Проектируете ирригационные системы в засушливых районах? Или изучаете возможные археологические памятники, скрытые лесом или другими деталями? Традиционные методы 3D-съемки и получения геопространственных данных затратны по времени и денежным средствам. Но теперь есть более эффективные и быстрые решения для таких целей.

LiDAR (Light Detection and Ranging) — это технология дистанционного зондирования, которая использует быстрые лазерные импульсы, чтобы создать модель рельефа. LiDAR отлично подходит, когда необходимо создать цифровые отображения поверхности земли с высоким разрешением для различных целей. В прошлом организации были вынуждены использовать в каждом случае отдельные системы со своими особенностями.

Сканер серии A, установленный на дрон DJI Matrice 600
Сканер серии A, установленный на дрон DJI Matrice 600

Теперь у них есть возможность пользоваться системой LiDAR, которую устанавливают на беспилотники, чтобы получилось единое устройство для 3D-картографирования. Систему ScanLook LiDAR серии А устанавливают на летающую платформу DJI Matrice 600, что позволяет получить для работы эффективное, универсальное и точное решение для 3D-зондирования на основе беспилотных технологий.

Примеры практического применения связки LiDAR и дронов

Моделирование ландшафта

Простейший пример, когда новые технологии могут существенно облегчить и сделать еще эффективнее работу — уборка мусора и грязи. Известно, что оплата обычно производится за квадратный метр, но расчеты не всегда бывают точны, особенно, если имеется большой разброс мусора, листьев, а на территории также растут кусты и деревья. LiDAR предлагает значительную экономию по сравнению с методами методам наземного исследования.

Сканер серии Revolution, установленный на дрон DJI Matrice 600
Сканер серии Revolution, установленный на дрон DJI Matrice 600

LiDAR значительно сокращает различного рода затраты на методы исследования рельефа. Применяя метод дистанционного исследования объектов разного типа, включая траву, листья или деревья, LiDAR может определить их положение, скорость перемещения (для движущихся объектов) и другие характеристики. Для этого используется пульсирующий лазерный луч, который отражается от поверхности объектов. Результатом такого процесса становится 3D-модель топографических контуров ландшафта, с которой затем могут работать пользователи. Если же подключить к процедуре исследования дрон Matrice 600 со ScanLock, то сканирование будет происходить со скоростью более 4 тыс. кв. м. в минуту. А теперь представьте, сколько можно сделать работы за 20 минут полетного времени?

Документирование ЧП и несчастных случаев

LiDAR — это активная система, которая использует для создания образов нужных объектов ультрафиолет и ближний инфракрасный диапазон. Это важно, если обстоятельства не позволяют задействовать для качественного картографирования внешнее освещение. Например, такой метод может потребоваться для съемок обстоятельств ночной автомобильной аварии. Для этого лучше всего задействовать дрон Matrice 600 с технологией ScanLook, чтобы буквально за один полет над местом аварии зафиксировать и обработать всю необходимую визуальную информацию.

Результат 3D-картографирования ночью участка шоссе и окружающего ландшафта с помощью LiDAR
Результат 3D-картографирования ночью участка шоссе и окружающего ландшафта с помощью LiDAR

Поскольку предлагаемое решение базируется на беспилотных технологиях, то пользователи практически немедленно получают точную информацию, подкрепленную визуальными деталями. Затем все это можно использовать в качестве доказательства в судебных процессах. Кроме этого, высокая скорость обследования с помощью воздушного сканирования помогает быстрее начать процесс эвакуации раненых или погибших людей, поврежденных автомобилей, а также быстрее приступать к уборке территории. Таким образом можно за сравнительно короткое время освободить проезжую часть для автомобилей, что особенно важно на оживленных трассах, а также сэкономить значительные средства на всех этапах работы.

Сельское хозяйства и ландшафтная планировка

Другой пример успешного применения новых технологий 3D-картографирования — большие фермы, где требуется создавать эффективную ирригационную систему. Например, на больших плантациях риса фермерам приходится создавать водозащитные насыпи. Это требует точного знания рельефа и особенностей почвы. Иначе вся создаваемая система может оказаться неэффективной и бесполезной. И опять оптимальным решением становится дрон Matrice 600 с установленной на нем технологией ScanLock. Сбор данных будет происходить со скоростью 183 метра за один проход. Процесс работы с одним большим полем не займет много времени. При этом не нужно, как раньше, ждать, когда обрабатываемые поля высохнут, чтобы на них можно было бы вывести соответствующую технику для сбора данных.

Археология

Там, где традиционные методы обследования больших, ценных с исторической точки зрения, ландшафтов требовали не одного года работы, теперь можно использовать технологию LiDAR, чтобы выполнить процесс по 3D-картографированию за считанные минуты. И снова наилучшим вариантом для такой процедуры будет установка ScanLock на дрон Matrice 600. “Потерянные” места и целые древние города будут открыты за самое короткое время.

Узнать больше о дроне DJI Matrice 600

Узнать больше о дроне DJI Matrice 600

автомобильный лидар, что такое автомобильный лидар

Если вы видели автономные автомобили на фотографиях или вживую, то заметили –  сверху у них на крыше закреплена какая-то странная штука.

Иногда она похожа на сирену, как в случае с прототипами Waymo от Google, что придает им вид очаровательного полицейского автомобиля.

Но, чаще эта штуковина напоминает крутящуюся консервную банку, установленную на распорках.

Это устройство на беспилотных автомобилях является лидаром, оборудованием, которое наделяет машину «зрением».

Слово лидар (LIDAR) состоит из начальных букв четырех английских слов – Light Identification Detection and Ranging, что означает «обнаружение, идентификация и определение дальности с помощью света».

Автомобильный лидар в беспилотном автомобиле – это самая дорогостоящая штука. Ценой $75 000, лидар стОит дороже, чем многие автомобили. А между тем, это устройство лишь одно из многих, которым нужно оснащать беспилотный транспорт.

Однако, в этом году данная ситуация может измениться благодаря появлению так называемых твердотельных лидаров высокого разрешения и стоимостью всего несколько сотен долларов. На самом деле, слово твердотельные – не очень корректно. Лидары нового поколения отличаются от предыдущих, своей неподвижностью (статичностью).

Но, их изобретение серьезно приближает момент массового появления беспилотного транспорта на дорогах. Поэтому стоит понять, что такое автомобильный лидар, и в частности статичный (твердотельный).

Беспилотные автомобили с лидарамиБеспилотные автомобили с лидарами

 Как работает автомобильный лидар

Слово «лидар» передает саму суть его функционирования – это радар, который работает на световых волнах. Вспомнив школьную физику, мы знаем – излучая радиоволны, радар определяет расстояние до объекта на основании времени, которое требуется радиоволне для отражения от объекта.

Лидар действует по схожей схеме, но использует для этого не радиоволны, а короткие импульсы света высокой мгновенной мощности. Для получения более точной информации, лидары используют инфракрасное излучение и ближнее ультрафиолетовое.

Но, беспилотному автомобилю нужны данные о десятках объектов вокруг. Поэтому он крутится вокруг своей оси, испуская множество световых вспышек, и таким образом формирует из «облака точек» трехмерное 360-градусное изображение окружающей обстановки. И делать он это может в любых средах, погодных условиях и независимо от времени суток.

В этом музыкальном клипе группы Radiohead видно, как из таких «точек» формируется картинка.

Чтобы беспилотные автомобили могли без участия человека передвигаться в пространстве, им требуется комбинация видеокамер, радаров и лидаров. И лидар выполняет критически важную функцию – он дает автомобилю представление не только о собственной локализации, но и о местоположении окружающих объектов.

GPS в данном случае непригодно – оно определяет местоположение с формированием круга диаметром около 5 м, а лидар делает это с точностью до 10 см.

Что такое уровни автономности автомобиля

Уровень автономности – это международные критерии, принятые, дабы объяснить, насколько тот или иной транспорт является самостоятельным.

Существует 6 уровней автономности

И вот лидар необходим при автономности уровня 4 и выше.

Что такое статичный автомобильный лидар

На сегодняшний день большинство лидаров – это дорогостоящие подвижные устройства.

Конечно, как и все технологии, лидары со временем стали дешевле и уменьшились в размерах. Но, пока они стоят от $8 000 до $80 000, и быстро выходят из строя.

А вот статичные лидары – другое дело. Сделанные главным образом из кремния, в них нет подвижных частей и используется лазер с изменяемой длиной волны. Такое устройство легкое, маленькое, потребляет мало энергии (работает на батарейке АА), быстрое и точное, работает при любых погодных условиях, и стоит не тысячи, а сотни долларов.

Технологию статичных кремниевых лидаров изобрела американская компания Quanergy. Полный набор их лазерного сканера сейчас стоит $900, но разработчик обещает постоянно снижать цены, доведя до $100.

Твердотельный лидар не просто дешевле, он очень быстрый, высокоточный и работает дольше. Электромеханический лидар выдерживает максимум 2000 часов, что меньше, чем требуется на год эксплуатации автомобиля, а твердотельный – до 100 000 часов.

Когда беспилотные автомобили станут массовым продуктом

Первый лидар в 1999 году был установлен на автомобиль Jaguar стоимостью около $100 000. В то время лидары с датчиками были настолько дороги, что люди шутили «вы приобретаете лидар и получаете бесплатно в нагрузку Jaguar».

Сегодня эта функция в автомобилях уже стОит $18 000, а с применением твердотельных датчиков цена «лазерного зрения» упадет до $1000.

Предполагается, что первые твердотельные лидары Quanergy начнут устанавливать на серийный электромобиль Fisker EMotion с запасом хода до 640 км на одной зарядке.

Выпуск этого автомобиля пока еще большой стоимости – $130 000, запланирован на 2019 год.

А вот массовое появление беспилотных автомобилей, использующих технологию твердотельных лидаров, ожидают в 2020-2023 годах. Считается, что к этому времени минимум одна модель автономного транспорта будет почти у каждого крупного автопроизводителя. И хотя поначалу, скорее всего, способностью к автономности будут наделять дорогие и роскошные модели, очень скоро ею оснастят и бюджетные машины.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Как стирается граница между цифровой камерой и лидаром

Когда Ouster начали разрабатывать свой лидар три года назад, было очевидно, что исследования в сфере глубокого обучения для камер превзошли исследования по лидарам. Данные лидара обладают невероятными преимуществами: богатая пространственная информация и высокая светочувствительность. Однако им не хватает исходного разрешения и эффективной структуры массива изображений, а трехмерные облака точек по-прежнему сложно использовать в нейросетях или обрабатывать с помощью аппаратного ускорения.

Ouster — старт-ап из Сан-Франциско, конструирующий 3D-сенсоры, которые сделают мир будущего намного безопаснее. По крайней мере, так утверждают сами разработчики.

Как работает лидар

Лидар — активный дальномер оптического диапазона, который формирует трёхмерную картину окружающего пространства. Работает по принципу эхолота. На открытых пространствах в качестве излучателя используется лазер, в закрытых помещениях достаточно обычного светодиода. Лидары разрабатываются с 1960-х годов.

Обычная цифровая видеокамера делает изображения с более высоким разрешением, но не дает точную информацию о расстоянии до объектов и плохо работает при слабом освещении.

lidar изображениеДанные с лидара — улица в Сан-Франциско

Разработчики Ouster решили взять только лучшее от камер и лидаров, объединив это в одном устройстве. Лидар Ouster OS-1 выдает изображения с фиксированной разрешающей способностью. Слои данных пространственно коррелированы, без временных несоответствий или шаттер эффектов, имеют 16 бит на пиксель и линейную фотоотраженность.

Одновременные уровни изображения в реальном времени выводятся из OS-1. То, что вы видите сверху донизу, это данные окружающего мира, интенсивности, дальности и облака точек — ВСЕ от лидара. Обратите внимание, что окружающее изображение захватывает облачное небо и тени от деревьев и транспортных средств

Оптическая система OS-1 имеет большую диафрагму, чем большинство DSLR, а разработанный метод подсчета фотонов ASIC настроен на повышенную чувствительность, поэтому окружающие изображения получаются детальными даже в условиях низкой освещенности. OS-1 фиксирует как прямые сигналы, так и скрытые данные (ambient data) в ближнем инфракрасном диапазоне, поэтому данные напоминают видимые освещенные изображения тех же сцен. Поэтому есть вероятность, что алгоритмы, разработанные для камер, хорошо будут работать с данными из лидара.

Open source визуализатор

Также разработчики обновляют open-source драйвер для лидара OS-1, чтобы он выдавал слои данных в фиксированном разрешении с панорамным обзором в 360. Помимо этого создатели представляют новый, встроенный в VTK, кросс-платформенный инструмент для визуализации, для просмотра, записи и воспроизведения, как изображений, так и облаков точек. Выходные данные сенсора не требуют пост-процессинга, чтобы показывать заявленную функциональность, все происходит в аппаратной части, а драйвер просто собирает потоки пакетов данных в изображения.

Новый open-source визуализатор

Обучение нейросети на данных с лидара

Так как сенсор выдает фиксированное разрешение кадров, с глубиной, сигналами и эмбиент данными для каждого пикселя, это позволяет использовать данные в алгоритмах глубокого обучения, которые специально разрабатывались для камер. Создатели закодировали глубину, интенсивность и эмбиент информацию в вектор почти таким же образом, как это делается для синего, красного и зеленого каналов во входном слое. Нейросеть, которая была обучена на данных с камеры, обобщается на тип данных, которые предоставляет лидар.

Как один из примеров, исследователи натренировали попиксельный семантичесский классификатор, который определяет дорогу, транспорт, пешеходов и велосипедистов по набору кадров глубин и интенсивностей. Итоговая нейросеть была запущена на NVIDIA GTX 1060 в реальном времени и показала впечатляющие результаты, особенно, если учитывать, что это первая попытка.

Семантическая сегментация данных с лидара: https://www.youtube.com/watch?v=JxR9MasA9Yc

Так как все данные попиксельные, есть возможность производить дополнительную обработку данных и накладывать на трехмерные изображения двумерные маски такие как границы машин.

В другом случае создатели решили не объединять данные в вектор, а оставить их разделенными и прогнать их через ту же нейросеть по отдельности.

Как пример они использовали предобученную нейросеть SuperPoint project от DeTone и запустили напрямую на их изображениях глубины и интенсивности. Нейросеть обучена на большом количестве RGB изображений и никогда не видела данные с лидара, но результаты на интенсивности и глубине поражают.

При внимательном обзоре, становится понятно, то нейросеть выделяет разные ключевые точки на каждом изображении. Тот, кто работал над лидарной и визуальной одометриями, поймет ценность избыточности, воплощенной в этом результате. Лидарная одометрия используется в геометрически однородных средах, например туннелях, тогда как визуальная одометрия применяется в открытых или плохо освещенных средах. Камера-лидар предоставляет мультимодальное решение для этой задачи.

Полученные результаты дают уверенность в том, что синергия данных с камеры и лидара нечто большее, чем просто сумма двух наборов данных.


Ссылки:

1. Видео


Интересные статьи:

ЛИДАР • Большая российская энциклопедия

  • рубрика
  • родственные статьи
  • image description

    В книжной версии

    Том 17. Москва, 2010, стр. 451-452

  • image description

    Скопировать библиографическую ссылку:


Авторы: С. М. Першин

ЛИДА́Р (от англ. Light Identification, De­tection and Ran­ging – об­на­ру­же­ние и оп­ре­де­ле­ние даль­но­сти с по­мо­щью све­та), оп­тич. ло­ка­тор для дис­тан­ци­он­но­го зон­ди­ро­ва­ния разл. объ­ек­тов (осо­бен­но воз­душ­ных и вод­ных сред), ис­поль­зую­щий ла­зер­ное из­лу­че­ние.

С раз­ра­бот­кой ла­зе­ров – им­пульс­ных ис­точ­ни­ков ко­ге­рент­но­го оп­тич. из­лу­че­ния с ма­лой ди­фрак­ци­он­ной рас­хо­ди­мо­стью – ста­ла воз­мож­ной пе­ре­да­ча све­то­вых им­пуль­сов на зна­чит. рас­стоя­ния. Пе­ре­ход в оп­тич. диа­па­зон длин волн су­ще­ст­вен­но рас­ши­рил функ­цио­наль­ные воз­мож­но­сти и об­ласть при­ме­не­ния Л. по срав­не­нию с ра­да­ра­ми. Это обу­слов­ле­но про­яв­ле­ни­ем но­вых (не ха­рак­тер­ных для ра­да­ра) фи­зич. яв­ле­ний при взаи­мо­дей­ст­вии оп­тич. из­лу­че­ния с та­ки­ми ма­лы­ми объ­ек­та­ми в ат­мо­сфе­ре, как мо­ле­ку­лы, аэ­ро­зо­ли, пыль и сус­пен­зии, и с по­верх­но­стью боль­ших объ­ек­тов (флуо­рес­цен­ция, све­че­ние плаз­мы, ин­ду­ци­руе­мой на по­верх­но­сти объ­ек­та оп­тич. им­пуль­сом).

Л. со­дер­жит ис­точ­ник оп­тич. из­лу­че­ния (ла­зер), фо­то­при­ём­ник, сис­те­му ре­ги­ст­ра­ции и об­ра­бот­ки ре­зуль­та­тов зон­ди­ро­ва­ния, уст­рой­ст­ва управ­ле­ния и ото­бра­же­ния ин­фор­ма­ции, блок пи­та­ния. На­прав­лен­ный пу­чок фо­то­нов рас­сеи­ва­ет­ся по ме­ре рас­про­стра­не­ния по трас­се, воз­вра­ща­ет­ся и ре­ги­ст­ри­ру­ет­ся вы­со­ко­чув­ст­ви­тель­ным фо­то­при­ём­ни­ком (рис. 1). Вре­мя за­держ­ки про­пор­цио­наль­но рас­стоя­нию до рас­сеи­ваю­ще­го объ­ек­та (ис­поль­зу­ет­ся в даль­но­ме­рах), а мо­ду­ля­ция ам­пли­ту­ды оп­ре­де­ля­ет­ся ко­эф. рас­сея­ния в об­рат­ном на­прав­ле­нии и по­те­ря­ми на по­гло­ще­ние.

Клас­си­фи­ка­ция Л. и об­ласть их при­ме­не­ния за­ви­сят от ти­па взаи­мо­дей­ст­вия оп­тич. из­лу­че­ния с ат­мо­сфе­рой и по­верх­но­стью. Так, из­ме­ре­ние рас­стоя­ний до Лу­ны и КА, гео­де­зич. и то­по­гра­фич. из­ме­ре­ния и мо­ни­то­ринг ат­мо­сфе­ры ос­но­ва­ны на яв­ле­ни­ях уп­ру­го­го рас­сея­ния све­та (мо­ле­ку­ляр­ное рас­сея­ние Рэ­лея, рас­сея­ние Ми на аэ­ро­зо­лях) и не­уп­ру­го­го рас­сея­ния (ком­би­на­ци­он­ное рас­сея­ние све­та, рас­сея­ние, обу­слов­лен­ное ре­зо­нанс­ным по­гло­ще­ни­ем в мо­ле­ку­лах, эф­фек­том До­п­ле­ра).

В Л. др. ти­па ис­поль­зу­ют яв­ле­ние флуо­рес­цен­ции при дис­тан­ци­он­ном об­лу­че­нии объ­ек­та (рас­ти­тель­ный и поч­вен­ный по­кров, за­гряз­нён­ные неф­те­про­дук­та­ми ак­ва­то­рии и су­ша, фи­то­планк­тон и хло­ро­филл в Ми­ро­вом ок. и др.) им­пуль­са­ми ви­ди­мо­го или УФ-из­лу­че­ния с по­сле­дую­щей ре­ги­ст­ра­ци­ей спек­тра флуо­рес­цен­ции.

image description

Рис. 1. Схема действия лидара (буквами a – f обозначены исследуемые атмосферные объекты).

Раз­ра­бот­ка ком­пакт­ных и мощ­ных им­пульс­ных ла­зе­ров по­зво­ли­ла ус­та­но­вить Л. на са­мо­лё­ты и КА для гло­баль­но­го мо­ни­то­рин­га ат­мо­сфе­ры и по­верх­но­сти пла­не­ты с ор­би­ты. Так был по­лу­чен пол­ный рель­еф по­верх­но­сти Мар­са по дан­ным мно­го­лет­них из­ме­ре­ний ор­би­таль­но­го вы­со­то­ме­ра MOLA (Mars Orbital Laser Altimeter, США). На ор­би­таль­ной стан­ции «Мир» и КА бы­ли ус­та­нов­ле­ны Л. для зон­ди­ро­ва­ния Зем­ли. Дис­тан­ци­он­ное изу­че­ние со­ста­ва по­верх­но­сти спут­ни­ка Мар­са Фо­бо­са по све­че­нию плаз­мы, ини­ции­руе­мой на по­верх­но­сти Фо­бо­са им­пуль­са­ми ла­зе­ра с про­ле­таю­ще­го ап­па­ра­та, бы­ло за­пла­ни­ро­ва­но на КА «Фо­бос-88» и пре­ду­смат­ри­ва­ет­ся в бу­ду­щих экс­пе­ди­ци­ях к Мар­су. Воз­мож­ность со­кра­ще­ния дли­тель­но­сти час­тот­но-мо­ду­ли­ро­ван­ных фем­то­се­кунд­ных им­пуль­сов по ме­ре рас­про­стра­не­ния в воз­ду­хе и уве­ли­че­ния их ин­тен­сив­но­сти до та­кой сте­пе­ни, что воз­ни­ка­ет оп­тич. про­бой в ат­мо­сфе­ре, бы­ла ис­поль­зо­ва­на в Л. для ана­ли­за со­ста­ва ат­мо­сфе­ры по ли­ни­ям све­че­ния плаз­мы и по­гло­ще­ния мо­ле­ку­ла­ми.

image description

Рис. 2. Вид сигнала лидара при зондировании облаков (Москва, 9.11.2006, 18:10, сильный снегопад).

Осн. ог­ра­ни­че­ние ши­ро­ко­го при­ме­не­ния Л. для мо­ни­то­рин­га ок­ру­жаю­щей сре­ды за­клю­ча­ет­ся в воз­мож­но­сти по­ра­же­ния глаз из­лу­че­ни­ем, ес­ли плот­ность энер­гии в пуч­ке и дли­тель­ность экс­по­ни­ро­ва­ния пре­вы­ша­ют по­ро­го­вое зна­че­ние (ок. 5·10–7 Дж/см2 для им­пуль­сов ви­ди­мо­го диа­па­зо­на). Для ре­ше­ния этой про­бле­мы ис­поль­зу­ют зон­ди­ро­ва­ние цу­гом из 103–105 им­пуль­сов с энер­ги­ей (0,1–1)·10–6 Дж с при­ём­ни­ком, ра­бо­таю­щим в ре­жи­ме счё­та фо­то­нов. При этом ве­ро­ят­ность ре­ги­ст­ра­ции сиг­наль­ных фо­то­нов, сле­дую­щих с боль­шой (до 100 кГц) час­то­той по­вто­ре­ния в ка­ж­дом им­пуль­се, мо­жет быть су­ще­ст­вен­но мень­ше еди­ни­цы, что по­зво­ля­ет тем не ме­нее ре­ги­ст­ри­ро­вать про­филь мно­го­слой­ных рас­сеи­ваю­щих об­ла­ков, напр. мно­го­ярус­ных об­ла­ков. (Для по­лу­че­ния ста­ти­сти­че­ски зна­чи­мо­го сиг­на­ла тре­бу­ет­ся боль­шое чис­ло им­пуль­сов в цу­ге, ко­то­рое об­рат­но про­пор­цио­наль­но ве­ро­ят­но­сти ре­ги­ст­ра­ции в им­пуль­се.) Та­кой Л. раз­ра­бо­тан в Ин-те кос­мич. ис­сле­до­ва­ний РАН и ус­та­нов­лен на КА Mars Polar Lan­der-99 для изу­че­ния стра­ти­фи­ка­ции ат­мо­сфе­ры Мар­са. Ха­рак­тер­ный вид сиг­на­ла та­ко­го Л. при зон­ди­ро­ва­нии мно­го­слой­ных об­ла­ков цу­гом из 32 000 им­пуль­сов в ус­ло­ви­ях пе­ре­груз­ки при­ём­ни­ка (кван­то­во­го счёт­чи­ка) на пер­вых 100 м из-за силь­но­го сне­го­па­да пред­став­лен на рис. 2.

Л. ши­ро­ко ис­поль­зу­ют­ся так­же для мо­ни­то­рин­га тек­то­нич. аэ­ро­зо­ля и сейс­мо­ак­тив­но­сти, об­на­ру­же­ния ко­ся­ков рыб и под­вод­но­го ви­де­ния, из­ме­ре­ния про­фи­ля дна, ско­ро­стей вет­ра, ав­то­мо­би­лей, кро­во­то­ка и др. Л. по срав­не­нию с др. ло­ка­то­ра­ми дис­тан­ци­он­но­го зон­ди­ро­ва­ния (ра­дио­ло­ка­то­ром, эхо­ло­том) обес­пе­чи­ва­ет бо́льшую даль­ность, вы­со­кое про­стран­ст­вен­ное раз­ре­ше­ние (до до­лей м) и мень­шее вре­мя из­ме­ре­ния па­ра­мет­ра (ме­нее 1 с).

Отправить ответ

avatar
  Подписаться  
Уведомление о