Lm2577S схема включения: Микросхема ЛМ2577 в автомобиле. – Схема-авто – поделки для авто своими руками – LM2577 модуль повышающего преобразователя / Деталька / Сообщество EasyElectronics.ru

Понижающий преобразователь напряжения на LM2596 из каменного века.

Как то достаточно давно, сидя в машине подумал: а чего это я заряжаю телефон через автомобильную зарядку установленную в прикуриватель. Ведь «потребителей» частенько бывает больше чем один, да и само гнездо прикуривателя бывает нужно. Сформулировал для себя ТЗ: питание от борт сети через замок зажигания, выход 1-3 порта с током до 2 А. Поискал в интернете и оказалось что я далеко не первый кто озадачился проблемой и даже больше, реализовал ее различными способами.

Для моей затеи нужен был стабилизатор напряжения выдерживающий напряжение бортсети и ток до 3 Ампер. Вариантов реализации на самом деле огромное количество, но все они сводятся к одному — импульсный понижающий преобразователь. Почему импульсный? Потому что у него КПД максимальное. Значить греться в преобразователе будет почти нечему и размеры обещают быть минимальные.

Понижающий преобразователь предназначен для понижения напряжения до необходимого значения. Его силовые элементы работают в ключевом режиме, по простому включено, выключено. В момент включения энергию накапливает дроссель (катушка на сердечнике), в момент когда силовой элемент (транзистор) выключен, дроссель отдает запасенную энергию в нагрузку. Как только дроссель отдаст накопленную энергию, схема контролирующая напряжение на выходе включит силовой транзистор и процесс повторится.

В настоящий момент все зарядные устройства для телефонов и планшетов вставляемые в гнездо прикуривателя выполнены по схеме с импульсным понижающим преобразователем.

Доставка и внешний вид:
Плата пришла в запаянном антистатическом пакете, вроде бы повод порадоваться, но на самом деле должно восприниматься как должное.
Качество пайки вполне себе качественное. Незначительные остатки флюса на обратной стороне на выводах переменного резистора.
Переменный резистор многооборотный, позволяет точно подстроить выходное напряжение.

Предусмотрены крепежные отверстия под винт. Клеммников нет, провода придется паять. Под микросхемой есть отверстия с металлизацией для дополнительного отвода тепла на обратную сторону платы.

Схема проще не придумаешь:

Единственное что у китайцев номиналы дросселя и конденсаторов отличаются. Видимо что есть в наличии, то и ставят. Хуже уже не будет.

На скорую руку припаял провода и нагрузку в виде проволочного резистора 2.2 Ом 10 Вт.
Для ограничения температуры при нагреве, резистор был помещен в воду.

На стенде доступно 2 напряжения 12 Вольт и 24 Вольта. Первое включение провел без нагрузки, для регулировки выходного напряжения, что бы не сжечь платку. Вращая винт резистора добился напряжения на выходе 5 Вольт.

Нагрузка 2.2 Ом подразумевает ток 2.27 Ампера, что укладывается в заявленные параметры платы а так же мои потребности с небольшим запасом, поскольку я раздобыл сдвоенный разъем с дохлой материнской платы:

По 1 Амперу на порт.

10 минут работы под нагрузкой и дикий нагрев платы. Фото с тепловизора:

Обратная сторона

Ахтунг! Температура 115С на диоде и 110С на микросхеме (сторона с деталями) и 105С с обратной стороны.
Температура дросселя около 70С, многовато, но в насыщение не входит.
Предельная температура для диода 150С, а для микросхемы 125С.

Ни в какие ворота не лезет. Начал думать что это брак или в очередной раз я купил дешевую фигню.
Скачал документацию на микросхему и обнаружил что этот преобразователь имеет паршивенькое КПД. А все из за того, что ключевой элемент в микросхеме является биполярный транзистор, который хоть и работает в ключевом режиме, но в открытом состоянии на нем падает прилично напряжения.
Повышение напряжения на входе до 24 Вольт ситуацию никак не спасло.
График КПД при токе нагрузки 3 Ампера:

Т.е. примерно 80% при питании от борт сети автомобиля. Выходит на микросхеме выделяется при нагрузке 3 А 3.7Вт, а еще греется диод и дроссель. Заменой диода (3А 40В) и дросселя (47мкГн), а так же установкой радиатора можно было бы решить проблему с нагревом, но к чему такие усилия, когда за те же деньги можно взять более продвинутые понижающие преобразователи.

Попытка исправить ситуацию:
На обратную сторону через теплопроводящий клей установил небольшой радиатор (распилил радиатор от неисправного блока питания компьютера).


Диод планировал брать там же из «дежурки» С дросселем немного сложнее, но думаю нашел бы с большим сечением обмоточного провода (учитывая приличный разброс индуктивности в применяемых китайцами дросселях).
Попытка включить и снять показания температуры привела к краху =) я перепутал полярность и спалил микросхему. Сэкономил, надо было штук 5 сразу брать на эксперименты, а лучше не брать вообще, ибо этот древний преобразователь настолько ужасен что в конкретно примененной плате даже 50% характеристик не отрабатывает.

Hint

На просторах сети обнаружил нетипичное применение микросхеме LM2596 — усилитель звуковой частоты класса D! Сигнал подается на вход 4 «обратная связь». Частота дискредитации правда не более 150 КГц. Ни в коем случае не призыв собирать усилитель на базе преобразователя, для этого есть специализированные микросхемы =)

Выводы неутешительны:
Плата в том виде, как она продается не оправдывает заявленные характеристики. Причем зависимость от тока нагрузки гораздо выше, чем от изменения напряжения. Доработать плату можно заменив половину деталей, но какой в этом смысл?

Все же если вам нужен понижающий преобразователь (step down), то лучшей альтернативой обозреваемому были бы преобразователи собранные на микросхемах: LM2577, LM 2678 и аналогичных. На данный момент я уже заказал несколько плат на пробу заявлено КПД 96%

Ps

Пока я очень долго планировал поставить на машину USB порты, моя машинка поехала в утиль 🙁

но все же нашлось еще место, куда бы я поставил преобразователь взамен трансформаторному блоку питания:
Это раз (там где креативненькая надпись):

Это два (передняя планка с USB портами выдрана из старого корпуса от компьютера стенки «корпуса» оргстекло):

Специально к обзору изготовил нагрузочную платку для проверки зарядных устройств (даже спалил парочку, не выдержали нагрузки). на али такие продаются готовые около 1$:


Котэ:


Понижающий преобразователь напряжения на MP1584 или отправляем LM2596 на дембель

Кто то может подумать: Старый конь борозды не испортит… А мы ответим: но и глубоко не вспашет.
Поэтому предлагаю вам обзор о понижающем преобразователе напряжения на основе микросхемы MP1584. Продавец позиционирует готовые платы как улучшенную альтернативу преобразователям на LM2596. В моем предыдущем обзоре о преобразователе на микросхеме LM2596 я столкнулся с диким несоответствием заявленным параметрам. Реальные значения меня не удовлетворили и в конце обзора я упомянул что заказал на пробу более продвинутые платы.

Итак, встречаем:

Доставка и внешний вид:
Учитывая копеечную стоимость заказа я не удивился тому, что обнаружил пакет с пупырками в своем почтовом ящике. Внутри было 2 платы запаянные в антистатический пакет. Что было вполне ожидаемо. Фломастером я позже сам подписал, что бы параметры заявленные не забыть.

Размеры платы 22х17мм, высота 4мм.
Контактные площадки под пайку. Отверстий для монтажа не предусмотрено.
Следов флюса нет, пайка приемлемая. Смотрел через лупу, дефектов не нашел, я сам так спаять к сожалению не в состоянии. Под микросхемой и дросселем отверстия с металлизацией для лучшего отвода тепла.


Сравнение с LM2596:
Разница в размерах приличная. Правда из за размеров платы эффективность рассеивания тепла ниже, но и КПД заявлено до 96%

Документация и схема:
Документацию в электронном виде можно посмотреть тут MP1584
Используется практически типовой диод Шоттки SS34 40В, 3А, который кстати на испытуемой плате держался молодцом.
Дроссель индуктивностью 8.2мкГн что согласно таблице 3 даташита указывает на лучшую эффективность работы преобразователя при выходном напряжении 3.3В и чуть хуже при 5В. Резистор R3 на плате 100кОм, согласно спецификации оптимально 1.8В выходное напряжение. В очередной раз убеждаюсь что все эти платы собирают из того что было под рукой, максимально удешевляют производство.

Схема типового включения:

Схема конкретной платы:

Обрыв подстроечного резистора выдаст на выходе максимальное напряжение на которое настроен делитель R1 R2. В данном случае до 20 Вольт. И это плохо.

Изначально думал что у купленной платы вместо электролитических конденсаторов на входе и выходе стоят керамические. Но на поверку оказалось что стоят электролиты 12-13 мкФ:

Так же вместо резистора R1 установлен подстроечный резистор для регулировки выходного напряжения. К слову очень ненадежный, тяжело выставлять точное напряжение. При малейшей механической нагрузке напряжение может «уплыть». Решается эта проблема несколькими вариантами: капелька лака для ногтей или краска типа эмали для фиксации контактных площадок подстроечного резистора


или замена «подстроечника» на постоянный резистор.
В частном случае можно поступить так — настроить подстроечный резистор на нужное напряжение, выпаять его и поставить эквивалентное постоянное сопротивление.

Интересный момент, управляя входом микросхемы 2(EN) с помощью логического уровня можно переводить микросхему в режим стоп-старт, т.е. можно извне управлять работой микросхемы и соответственно включать или обесточивать нагрузку.

Немаловажный факт, частота преобразования: Задается резистором подключенным к выводу 6 микросхемы и в типовом варианте имеет сопротивление 200кОм, но на плате установлен 100кОм. Формула задания частоты преобразования:


Просил на работе проверить частоту преобразования — сказали около 950 КГц. Обилие резисторов 104, унификация, что поделать. Частота соответствует установленному сопротивлению.

КПД:

Продавец заявляет КПД до 96% и опять обман. Максимальное КПД которое можно выжать не более 88% При чем оно максимально при питающем напряжении около 12 Вольт и диапазоне нагрузки 0.5-2 Ампера.

Испытания:
Для начала замер потребляемого тока на холостом ходу 0.22мА. Неплохо.

В качестве нагрузки применил 2 резистора 3.3 и 2.2 Ом. В виду сильного нагрева последние на время тестирования были помещены в емкость с водой.

На данный момент тепловизор недоступен, отдали в прокат на другой объект, поэтому замер температуры был произведен пирометром достаточно популярным.

Точность в пределах пары градусов.

Пробное включение производится без нагрузки для выставления нужного выходного напряжения, что бы избежать выхода из строя платы или нагрузки.

Даем нагрузку и оставляем в работе:

Через пару минут я услышал работу преобразователя. Ну как услышал — магнитола подключенная к тому же блоку питания начала шипеть, появились помехи. Контроль напряжения начал показывать периодические просадки выходного напряжения на 10-15% Сработала термозащита микросхемы и преобразователь периодически начал пропускать такты. Знатоки компьютеров используют термит «троттлинг»
Думая что большее входное напряжение должно облегчить работу преобразователя без перерыва подключил преобразователь к блоку питания 24 Вольт. Первое включение — щелчок и в микросхеме появилась дырка (позже начав изучать документацию я понял что КПД немного упало и я просто добил микросхему, которой и так было тяжело от перегрева).
Волшебного дыма не было. К чести преобразователя на выходе напряжение отсутствовало.

Что бы не спалить вторую и последнюю плату было решено использовать радиатор и установить его с помощью термогерметика на обратную сторону платы.
Термогерметик star 922 многим знаком. Я его использую для фиксации светодиодов. Не самый лучший конечно, но хоть что то.
Радиатор:

С обратной стороны что бы радиатор не замыкал контакты на плате сточил часть напильником. Для визуального восприятия закрасил маркером:

Вот так выглядит плата с радиатором (отпилен от большого что используется в блоках питания АТХ)

Замеры температуры были сведены в мини таблицу:
Для испытаний выбрал наиболее распространенные в цифровой логике напряжения 5В и 3.3В. Входное напряжение со стенда, с учетом падения на проводах 11,5-11,7Вольта. Резисторы обычные 5%. Ток округлил до десятых, поскольку заострил внимание на температуре: t1 — максимальная температура на плате со стороны деталей. t2 — максимальная температура с обратной стороны платы.

Каждый раз дав плате поработать около 10 минут производил замер температуры. Замер производился многократно по всей поверхности платы на расстоянии 1 см, учитывалось только максимальное значение. В 100% случаем самый горячий элемент на плате являлся микросхемой.
При нагрузке 2.2Ом при выходном напряжении 5В замеры без радиатора не проводились, поскольку на первом экземпляре преобразователя взорвалась микросхема.

Замечен факт повышения напряжения на выходе под нагрузкой при заданном 3.3В(без нагрузки) до 3.45В. При испытаниях на выходе 5В такого не наблюдалось.

К сожалению осциллограф не доступен и посмотреть сигнал на выходе нет возможности, но этот недостаток будет устранен в ближайшее время. Поскольку я таки задавил свою жабу и заказал кит осциллограф DSO062.

Рекомендации при использовании:
При токе нагрузки выше 1А желательно установить небольшой радиатор, можно в половину того что использовал я. Вполне достаточно. Фиксация подстроечного резистора лаком. При использовании совместно с приемником УКВ применить для фильтрации помех по питанию дополнительные керамические конденсаторы.

Выводы:
Плюсы:
Компактность. Если не «выдавливать» по максимуму из преобразователя, то вполне работоспособно. Достаточно высокий КПД и большой диапазон напряжений. Включением преобразователя можно управлять извне (необходима мелкая переделка платы — подпаять проводник). При выходе из строя микросхемы на выходе преобразователя входного напряжения не обнаружено (возможно это частный случай).
Минусы:
Не понравилась маркировка питания только с обратной стороны, Продавец плату перехвалил, она так же не выдерживает заявленных характеристик. Необходима незначительная доработка для эффективной работы. Кроме того имеются помехи в УКВ ФМ диапазоне (на магнитоле слышно шум и свист, особенно при граничных режимах работы). Подстроечный резистор оставляет желать лучшего, оптимально заменить на многооборотный или постоянный резистор (при необходимости одного фиксированного напряжения на выходе).
UPD: буду дальше выбирать преобразователи, какой посоветуете: KIS-3R33S, XM1584, MP2307 еще варианты, требования выход 5В и ток 3А без значительных переделок?

Ваши замечания по обзору будут своевременно устранены и помогут мне в дальнейшем.

Схема преобразователя DC-DC на LM2596

LM2596 — понижающий преобразователь постоянного тока, он выпускается часто в виде готовых модулей, около 1 доллара ценой (в поиске LM2596S DC-DC 1.25-30 В 3A). Заплатив же 1,5 доллара, на Али можно взять похожий модуль с LED индикацией об входном и выходном напряжении, выключение выходного напряжения и точной настройкой кнопками с отображением значений на цифровых индикаторах. Согласитесь — предложение более чем заманчивое!

Ниже приводится принципиальная схема данной платы преобразователя (ключевые компоненты отмечены на картинке в конце). На входе есть защита от переполюсовки — диода D2. Это позволит предотвратить повреждения регулятора неправильно подключенным входным напряжением. Несмотря на то, что микросхема lm2596 может обрабатывать согласно даташита входные напряжения вплоть до 45 В, на практике входное напряжение не должно превышать 35 В при длительном использовании.

Схема преобразователя DC-DC на LM2596

Для lm2596, выходное напряжение определяется уравнением, приведённым ниже. Резистором R2 выходное напряжение можно регулировать в пределах от 1.23 до 25 В.

Схема преобразователя DC-DC на LM2596

Хотя микросхема lm2596 рассчитана на максимальный ток 3 А непрерывной работы, малая поверхность фольги-массы не достаточна, чтобы рассеять выделяемое тепло во всём диапазоне работы схемы. Также отметим, что КПД этого преобразователя варьируется весьма сильно в зависимости от входного напряжения, выходного напряжения и тока нагрузки. Эффективность может колебаться от 60% до 90% в зависимости от условий эксплуатации. Поэтому теплоотвод является обязательным, если непрерывная работа идёт при токах более чем 1 А.

Схема преобразователя DC-DC на LM2596

Согласно даташиту, конденсатор прямой связи необходимо устанавливать параллельно резистору R2, особенно когда напряжение на выходе превышает 10 В — это нужно для обеспечения стабильности. Но этот конденсатор часто не присутствует на китайских недорогих платах инверторов. В ходе экспериментов были проверены несколько экземпляров DC преобразователей в различных условиях эксплуатации. В итоге пришли к выводу, что стабилизатор на ЛМ2596 хорошо подходит для низких и средних токов питания цифровых схем, но для более высоких значений выходной мощности необходим теплоотвод.

Схема подключения LM2596 DC-DC преобразователя

LM2596 DC-DC преобразовательLM2596 — это импульсный понижающий регулируемый стабилизатор постоянного напряжения. Имеет высокий КПД. Меньше нагревается если сравнивать с модулями на линейных стабилизаторах. Источник питания может применяться в широком спектре устройств. К безусловным достоинствам относится работа в ощутимом диапазоне входного напряжения. Вместе с большим КПД это дает хорошие результаты при последовательном включении DC-DC LM2596 с химическими источниками тока, солнечными панелями или ветряными генераторами.

Дополнив преобразователь DC-DC LM2596 трансформатором, выпрямителем и фильтром получим блок питания. На входе стабилизатора напряжение должно быть большее выходного минимум на 1.5 В. При потреблении мощности от DC-DC LM2596 более десяти Вт следует применять средства охлаждения.

Предусмотрены крепежные отверстия под винт. Клеммников нет, провода придется паять. Под микросхемой есть отверстия с металлизацией для дополнительного отвода тепла на обратную сторону платы.

Технические характеристики преобразователя LM2596

  • Эффективность преобразования (КПД): до 92%
  • Частота переключения: 150 кГц
  • Рабочая температура: от -40 до + 85 °C
  • Влияние изменения входного напряжения на уровень выхода: ± 0.5%
  • Поддержание установленного напряжения с точностью: ± 2.5%
  • Входное напряжение: 3-40 В
  • Выходное напряжение: 1.5-35 В (регулируемое)
  • Выходной ток: номинальный до 1А, от 1 до 2А заметно возрастает нагрев, предельный 3A (требуется дополнительный радиатор)
  • Размер: 45x20x14 мм

Принципиальная схема преобразователя LM2596

В некоторых модулях защитный диод D1 включен обратно-параллельно на входе, но в таком случае не нужно забывать подсоединить и предохранитель на входе, который сгорит, если перепутать полярность, также этот диод защищает от всплесков напряжения на выходе.

Принципиальная схема DC-DC преобразователя LM2596Существуют варианты с прямым включением диода D1 (SS34, SS54) на входе, обычно это диоды Шоттки, у этих диодов есть два положительных качества: весьма малое прямое падение напряжения (0.2-0.4 вольта) на переходе и очень высокое быстродействие.
Принципиальная схема DC-DC преобразователя LM2596 (Прямое включение диода SS34)Но дешёвые модули на базе LM2596 не имеют защитного диода, с одной стороны — это минус, так как случайно можно убить преобразователь перепутав полярность на входе, а с другой стороны — это плюс, потому что на диоде будет падать некоторое напряжение и греться при больших токах.

Схема подключения LM2596 DC-DC преобразователя

Подключается преобразователь очень просто, не стабилизированное напряжение подается на контакты модуля +IN, –IN (плюс и минус соответственно), а выходное напряжение снимается с контактов платы +OUT, -OUT.

LM2596 - Схема подключения DC-DC преобразователяС обратной стороны есть стрелка, что указывает в какую сторону идёт преобразование.
Схема подключения LM2596 DC-DC преобразователя

Фото галерея

LM2596 DC-DC преобразователь - Вид сверху
LM2596 DC-DC преобразователь - Вид снизу
Схема подключения LM2596 DC-DC преобразователя
LM2596 DC-DC преобразователь под нагрузкой
LM2596 DC-DC преобразователь под нагрузкой 1.30 А
LM2596 DC-DC преобразователь под нагрузкой 1.40 АLM2596 DC-DC преобразователь
LM2596 DC-DC преобразователь

Материалы

Скачать документацию/datasheet LM2596.pdf
LM2596 Большой тест понижающего преобразователя напряжения

Купить LM2596 на AliExpress

Отправить ответ

avatar
  Подписаться  
Уведомление о