Lm2577T adj схема включения: Схема импульсного DC-DC блока питания на основе LM2577 – Микросхема ЛМ2577 в автомобиле. – Схема-авто – поделки для авто своими руками

Схема импульсного DC-DC блока питания на основе LM2577

Огромную популярность заслужили импульсные блоки питания DC-DC, из-за их высокого КПД по сравнению с линейными источниками питания. Хотя DC-DC блоки питания уступают линейным источникам питания в малой стабильности выходного напряжения, однако на них рассеивается меньшая мощность при существенном изменении входного напряжения.

Различными фирмами производится достаточно обширная номенклатура всевозможных микросхем, на базе которых можно решить подобные задачи. В этой статье описываются практические схемы 2-х источников питания на базе микросхемы LM2577.

Технические данные микросхемы LM2577:

  • Входное напряжение: 3,5…30 вольт.
  • Частота генератора: 52 кГц.
  • Индекс «-AJI» — микросхема с функцией регулирования.
  • Индекс «-12» — фиксированное напряжение стабилизации в 12 вольт.
  • Индекс «-15» — фиксированное напряжение стабилизации в 15 вольт. 

В структуре микросхемы LM2577 входит мощный n-p-n транзистор (3А) с крайним напряжением эмиттер-коллектор 65 В. Данная микросхема снабжена температурной и токовой защитой.

Описание импульсного блока питания

Первая схема. Трансформатором Т1 напряжение сети 220 В понижает до 8… 16 В, после напряжение выпрямляется диодным мостом (VD1…VD4) и излишние пульсации сглаживаются емкостью С1. Выпрямленное напряжение идет на контакт 5 D1, в итоге активируется внутренняя электрическая схема и генератор микросхемы.

Открытый транзистор в структуре микросхемы закорачивает выводы 3 и 4, в итоге во внешней индуктивности L1 происходит накопление энергии. В этот момент диод VD5 заперт. Через определенное время транзистор запирается и накопленная энергия во внешней индуктивности устремляется сквозь диод VD5 к емкости С4, которая за счет этой энергии заряжается до необходимого напряжения.

Одновременно выходное напряжение (напряжение на конденсаторе) сопоставляется с опорным напряжением (1,23 вольт), и в случае если оно меньше, то цикл снова повторяется. Если же напряжение выше опорного, то время, при котором транзистор находится в открытом состоянии, сокращается.

Отсюда следует, что на емкости отмечается пилообразное напряжение с частотой генератора и амплитудой в несколько милливольт. Напряжение на выходе возможно настраивать в больших пределах, однако оно не может быть меньше входного, поскольку в этом случае диод VD5 откроется, и напряжение пойдет на выход, а это приведет к тому что транзистор постоянно будет закрыт.

Вторая схема. Она мало чем отличается от первой. Есть небольшая разница: накопление энергии здесь происходит в трансформаторе Т2, а не в дросселе и после закрытия транзистора она поступает во вторичку.

Здесь по причине трансформации возможно получить более низкое выходного напряжения по отношению к входному. Однако следует учесть один момент – не следует подавать на микросхему более 32 вольт, поскольку индукционные скачки на транзисторе могут быть больше допустимого уровня в 65 вольт. Цепь состоящая из диодов VD6 и VD7 предназначена для стабилизации обратного напряжения на первичке трансформатора Т2.

Детали импульсного блока питания

Трансформаторы Т1 в обеих схемах мощностью от 8 до 10 Вт. Трансформатор Т2 собран на феррите марки Е20/10/6 с зазором в центральном стержне 0,25 мм. Первичная обмотка содержит 33 витка медного обмоточного провода ПЭВ-2 диаметром 0,45 мм, а вторичная обмотка имеет 45 витков провода ПЭВ-2 диаметром 0,31 мм.

Дроссель L1 содержит 53 витка провода ПЭЛШО диаметром 0,4 мм намотанного на ферритовом сердечнике 4-18×11. Между чашечками укладывают изоляционную прокладку толщиной 0,2 мм.

Электролитические емкости типа К50-35, керамические типа КД по возможности их необходимо установить ближе к микросхеме. Выпрямительный мост VD1-VD4 построен на диодах КД213.

Преобразователь Вверх-Вниз на LM2577 & LM2596

Наконец до меня добралось интересное электронное устройство, которое с радостью представляю на обзор.
Судя по описанию продавца — преобразователь весьма универсален и способен делать из 4 — 35В напряжение 1,25 — 25В при максимальном токе до 3А с регулируемым токоограничением 0 — 3А. Казалось-бы, вот оно счастье, да не тут-то было…

Прислали преобразователь в простом пакетике

Монтаж аккуратный, флюс почти отмыт, поверхность немного грязная.



Заявлено, цитирую

Input Voltage :4-35V
Output voltage: Continuously adjustable(1.25-25V unload adjust)
Output current: 3A Max(If more than 15W, please install the heat sink)
CC range :0-2A (adjustable)
Revolving light current: CC value * (1%-100%), default is 0.1 times
Minimum voltage difference: 2V
Output power: natural cooling 15W
Conversion efficiency: 80% (the higher the output voltage, the higher the efficiency)
Operating Temperature: Industrial (-40 degree to +85 degree) (ambient temperature more than 40degree, lower power use, or add heat sink)\
Full load temperature rise: 45 degree
Indicator: CC indicator is Red, charging indicator is Red, charging completed the indicator is Blue.

Output short circuit protection: Yes, constant current.
Connect method: Can solder on the PCB with wire directly
Input: IN+ input Positive is, IN- input negative
Output: OUT+ output is positive, OUT- output negative
Module Size: 50 x 37 x 13mm


Подключение только пайкой.
Под греющимися микросхемами сделано множество переходов для улучшения теплоотвода на обратную сторону платы — это заметно улучшает переход тепла на обратную сторону и позволяет использовать там охлаждающий радиатор.

Устройство представляет собой 2 независимых последовательно включенных преобразователя напряжения.
1 ступень преобразования на базе LM2577S-ADJ — входное напряжение 4-27В повышается до 27В. Если на входе напряжение превысит 27В, напряжение проходит на 2 ступень без преобразования вплоть до максимальных 35В.
2 ступень преобразования на базе LM2596S-ADJ — напряжение 27В понижается до требуемого. Тут-же происходит регулируемое ограничение выходного тока.

Такой принцип прост в реализации, но за счёт двойного преобразования, устройство будет иметь заведомо низкий КПД.

По умолчанию, преобразователь был настроен на 4,2В 1А — явно для зарядки Li-Ion аккумуляторов.
Резистор SW1 задаёт выходное напряжение 1,25-25В
Резистор SW2 задаёт порог индикации светодиода процесса зарядки
Резистор SW3 задаёт ограничение выходного тока 0,02А — 2,9А

Уставка тока очень сильно зависит от температуры платы. В этом нет ничего удивительного, учитывая конструкцию шунта в виде печатной дорожки. Например, при начальной уставке тока 1,50А после хорошего прогрева платы остается всего 1,35А 🙁

Первичную проверку проводил при входных напряжениях 5В и 12,5В
Заявленные 15Вт без охлаждения не выдаёт — мгновенно перегревается. Мало того, перегревается даже на мощности 10Вт.

При входном напряжении 12,5В без перегрева преобразователь может выдать всего 5V 1A 5Вт КПД=58% T=73°С, и 12V 0,5A 6Вт КПД=67% Т=71°С, что очень грустно.
При входном напряжении 5В, ситуация ещё хуже 5V 0,8A 4Вт КПД=49% T=79°С и 12V 0,4A 4,8Вт КПД=54% Т=80°С
Во всех случаях, перегревался повышающий преобразователь. С такими характеристиками устройство является практически бесполезным и тестирование как есть было прекращено.
Чтобы устройство не выкидывать, пришлось его хоть как-то доделать на отдачу заявленных 15Вт.

Реальная схема преобразователя

Измеренная частота работы повышающего преобразователя около 50кГц
Измеренная частота работы понижающего преобразователя нестабильна и изменяется в зависимости от нагрузки от 40кГц до 160кГц вместо заявленных стабильных 150кГц. Такая работа характерна для китайских LM2596

Явные ошибки производителя:
1. Слишком малая величина индуктивности и габарита дросселя L2 (33мкГн / 2,5А) — он входит в насыщение и перегревается даже при небольшой нагрузке.
LM2577S-ADJ реально работает на частоте 50кГц, по расчёту её дроссель должен иметь индуктивность не менее 120мкГн / 3A и размер гораздо больше.
2. Перегрузка сглаживающего конденсатора 1 ступени 100мкФ/35В — его ESR аж 0,6Ом. Он должен быть не менее 220мкФ/35V с низким ESR.
3..Перегрузка диода D3 (SS34). Для выходного тока 3А он должен быть на ток не менее 4А.
4. Зелёный светодиод окончания зарядки работает некорректно — подсвечивается в любом режиме работы. Это связано с ошибочной установкой зелёного светодиода вместо синего с большим падением напряжения.

5. При установке выходного напряжения менее 1,8В, токоограничение нормально не работает и в случае КЗ очень быстро перегружается по току и выходит из строя диод D3.
6. Какая-то левая микросхема LM2596

Не буду долго утомлять Вас своими длительными экспериментами с подбором элементов, покажу только что сделал и что вышло в итоге.
1. Дроссель повышающей ступени намотал на T90-26 42 витка проводом 0,9мм получил 120мкГн 4A. Дроссель оказался с запасом, хватило-бы T80-26
2. Накопительный конденсатор повышающей ступени заменил на 470мкФ/35В — также с запасом.

3. Выходное напряжение повышающей ступени уменьшил до 23В для снижения нагрузки на дроссель понижающей ступени при выходном напряжении 12-15В. Для этого просто добавил резистор 47кОм параллельно резистору R7 (10кОм)


При этом максимальное выходное напряжение естественно уменьшилось до 22В, но мне больше и не надо.
4. Заменил диод с обозначением R5 на диодную сборку (два последовательных диода), чтобы он постоянно не подсвечивался. Как альтернатива — можно заменить зелёный светодиод синим.

5. Добавил резистор 200 Ом последовательно с подстроечником уставки выходного напряжения, чтобы им нельзя было настроить выходное напряжение менее 1,8В. Поставить резистор в SMD корпусе оказалось невозможно, поэтому запаял обычный выводной резистор, а дорожку просто порезал.


6. Установил компенсационный конденсатор 4,7нФ в цепи ОС по напряжению — это улучшило стабильность работы понижающего преобразователя. Подходит ёмкость 1-4,7нФ.
7. Приклеил на теплопроводный скотч радиатор от старого процессора для более эффективного охлаждения силовых элементов. Радиатор также немного уменьшил снижение тока уставки с прогревом платы.


Схема после переделки

Проверка при входном напряжении 12,5В
При выходном напряжении до 7В, максимальный выходной ток не должен превышать 2,5A, чтобы не спалить диод и дроссель 2 ступени. При напряжении более 7В, выходной ток ограничен тепловой мощностью рассеяния платы (около 8Вт с радиатором).

Максимальная выходная мощность реально увеличилась в разы (до 30Вт), сам не ожидал такого результата 🙂

Проверка при входном напряжении 5В
Результат гораздо скромнее, но всяко лучше, чем был до переделки.

Во время проверки, ни один элемент не нагрелся свыше 80°С, что допустимо для длительной работы.

Ради интереса покажу странную работу понижающего преобразователя (на диоде D3) при различных выходных напряжениях







При этом повышающий преобразователь работает стабильно и предсказуемо

Максимальная амплитуда пульсаций на выходе при максимальном выходном токе 2,5A — 200мВ.

Вывод: данный преобразователь не рекомендую к приобретению — слишком много надо переделывать для его более-менее нормальной работы.
Связываться с китайскими LM2596 больше не стану.

Импульсные блоки питания на микросхеме LM2577

Электропитание

Главная  Радиолюбителю  Электропитание



Широкое распространение получили импульсные DC/DC-блоки питания, ввиду их более высокого КПД по сравнению с линейными. Хотя они и уступают линейным в меньшей стабильности выходного напряжения, но при значительном изменении входного напряжения на них рассеивается меньшая мощность. Производится довольно широкая номенклатура различных микросхем, на основе которых возможно выполнение подобной задачи. В данной статье рассмотрены практические схемы двух блоков питания на основе микросхемы LM2577T-AJI.

Краткие характеристики микросхемы:
Напряжение питания…………………………………………3,5…30 В
Частота внутреннего генератора…………………………52 кГц

В состав данной микросхемы входит 3-амперный выходной транзистор структуры п-р-п с граничным напряжением эмиттер-коллектор 6S В.

Микросхема имеет внутреннюю токовую и температурную защиту.

Рис. 1

Принципиальная схема, показанная на рис.1, представляет собой простой индукторный преобразователь. Сетевое напряжение 220 В преобразовывается трансформатором Т1 в более низкое 8… 16 В, затем выпрямляется диодным мостом на VD1-VD4 и сглаживается конденсатором С1. Выпрямленное напряжение поступает на вывод 5 D1, в результате чего запускается внутренняя схема и генератор. Внутренний транзистор замыкает выводы 3 и 4, в результате чего происходит накопление энергии во внешней индуктивности L1, при этом диод VD5 закрыт. После того как транзистор закроется, энергия с индуктивности поступит через открытый диод VD5 на конденсатор С4, и он зарядится до определенного напряжения. При этом выходное напряжение, т.е. напряжение на емкости сравнивается с опорным 1,23 В, и, если оно ниже, процедура повторится в следующем такте. Если оно больше, то длительность времени открытия транзистора уменьшится. Таким образом, на конденсаторе наблюдается пилообразное напряжение амплитудой в несколько милливольт и частотой генератора. Выходное напряжение можно регулировать в широких пределах, но оно не может быть ниже входного, так как в этом случае откроется диод VD5, и напряжение поступит на выход, при этом транзистор микросхемы всегда закрыт. Если необходимо создать преобразователь с более низким напряжением, чем входное, то лучше использовать обратноходовый преобразователь (рис.2).

Рис. 2

Работа основной части схемы не отличается от предыдущей с той лишь разницей, что энергия запасается не в дросселе L1, а в трансформаторе Т2, и после закрытия транзистора микросхемы передается во вторичную обмотку. За счет коэффициента трансформации, а в большей мере потому, что постоянное напряжение не может пройти через обмотки трансформатора, можно достичь меньшего выходного напряжения, чем входное. При этом следует опасаться подавать на вход микросхемы напряжение выше 32 В, так как выбросы на выходном транзисторе могут быть выше предельно допустимого напряжения эмиттер-коллектор 65 В. Цепочка VD6VD7 служит для ограничения обратного напряжения на первичной обмотке трансформатора Т2.

Детали. Микросхема с индексом «-AJI» рассчитана на регулируемое потребителем выходное напряжение. С индексом «-12» и «-15» — на фиксированное выходное напряжение соответственно 1 2 и 15 В. При этом вывод 2 микросхемы необходимо без резистивного делителя подключить непосредственно к выходу. Трансформаторы Т1 в обеих схемах на мощность 8…10 Вт, если выходное напряжение, как на схемах, 24 В и токе 200 мА. Если необходимо получить широкий диапазон входного напряжения, например от 8 до 16 В по первой схеме и 8…32 В по второй, то провод необходимо выбрать диаметром не менее 1 мм (чем выше входное напряжение, тем меньший ток потребляется от обмотки).

В качестве диодов VD1-VD4 в обеих схемах применены диоды КД213, при большем входном напряжении преобразователя, а также меньшей потребляемой мощностью в нагрузке возможно применение менее мощных диодов, например КД209. Все резисторы типа МЛТ 0,125, электролитические конденсаторы типа К50-35 или аналогичные. Керамические конденсаторы типа КД. Их желательно устанавливать как можно ближе к микросхеме. Дроссель L1 намотан на феррите 4-18×11 и содержит 53 витка провода ПЭЛШО диаметром 0,4 мм. Между чашечками устанавливают прокладку толщиной 0,2 мм. Трансформатор Т2 намотан на феррите Е20/10/6 с зазором в центральном керне 0,25 мм и содержит первичная обмотка 33 витка провода ПЭВ-2 диаметром 0,45 мм, вторичная — 45 витков провода ПЭВ-2 диаметром 0,31 мм.

Автор: С.М. Абрамов, г. Оренбург

Дата публикации: 12.02.2008

Рекомендуем к данному материалу …


Мнения читателей
  • Denis / 21.05.2009 — 08:09
    как скачать,пожалуйста???
  • nikonor / 08.04.2008 — 06:04
    Может быть этот даташит Вам подойдет: http://radioradar.net/datasheet_search/H/D/4/HD4812_Crydom.pdf.html
  • miraziz / 13.02.2008 — 05:58
    мне нужна схема выпрямительные модули HD4825 (25А) и HD4830 (30А)

Вы можете оставить свой комментарий, мнение или вопрос по приведенному выше материалу:


www.teleradiocom.ru — Сайт по ремонту телерадиоаппаратуры

!!! !!! !!!
<Радиотелефоны: Спасибо за посещение этого сайта!
Cайт посвящен ремонту и эксплуатации электронных устройств.
Началось все с радиотелефонов, здесь размещены схемы и инструкции как «китайских» радиотелефонов (Nokia 6150CID, 6110CID и им подобных), а также широко известных радиотелефонов традиционных производителей (Harvest, Senao).
По ссылке коды можно получить информацию, как зарегистрировать трубку на базовом блоке радиотелефона (около 40 моделей).
Антенны - материалы по Ротхаммелю и журналам. Много сопутствующего материала (кабели, расчет, любимая всеми DX60).Рядом знаменитая программа для моделирования антенн на компьютере MMANA Игоря Гончаренко.
В разделе телевизоры 96 принципиальных схем.
Статьи посвящены электронике, для начинающих, и не только. В статьях много интересных схем и расчетов.
Справочник содержит типовые схемы включения микросхем и их электрические параметры.
Инструкции
Схемы
Офисные р/тел.
Коды
Ремонт
<Сотовые телефоны
<Радиостанции
<Антенны
<MMANA
Схемы:
Бытовая апп-ра
Телевизоры
Ремонт телевизоров
<Статьи
<Справочники
<Форум
<Ваши письма
<Ссылки
<Поиск по сайту
<Новости электроники
<Новости сайта
<Вебмастеру
<Съемные панели
<Дискуссии
<Юлин сайт
<Каталог
| | | | |
| | | |

Регулируемый стабилизатор напряжения на LM2576

Решил недавно отреставрировать свои колонки от ПК, которые достались мне, не помню когда и от кого. Данные колонки хрипели уже на пол громкости. Вид мне был не важен, так как они звучали в моей лаборатории, главное, чтобы был звук без треска и фона. Было принято решение собрать новый усилитель и темброблок. Но питать данные устройства я решил стабилизированным источником, поэтому стал собирать стабилизированный источник с возможностью регулировки выходного напряжения. Вообще мне было нужно однополярное напряжение +15 Вольт, но на всякий случай решил сделать регулируемое выходное напряжение.

Выбор пал на LM2576, их у меня было много, когда-то покупал для ремонта БП. LM2576 есть на фиксированное выходное напряжение 3.3В, 5В, 12В, 15, а также с регулируемым выходным напряжением. В регулируемой версии выходное напр-ие меняется от 1.23В до 37В, а у LM2576HV до 57 Вольт.

Входное же напр-ие может достигать 40В, а у LM2576HV до 60В. Максимальный выходной ток 3 А. Температура, которую может выдержать кристалл, составляет 150 градусов Цельсия.

Если у LM2576 фиксированное выходное напряжение, то в конце маркировки пишется индекс, например 3.3 или 5.0, который указывает выходное напряжение (пример маркировки стабилизатора на 5 Вольт — LM2576HV-5.0).

Схема регулируемого стабилизатора напряжения на LM2576

Ничего сложного нет. Дроссель можете выдернуть из блока питания ПК, например как этот.

Если будете покупать или мотать, то 150 мкГн и на 5 Ампер, не менее. 20-30 Витков провода диаметром 0,8 мм достаточно.

Остальные все элементы доступные.

Добавив диодный мост, получим регулируемый блок питания.

Диодный мост можете собрать из диодов, или использовать любой с током 5 Ампер и более. Я применил KBU810, на 8 Ампер, другого не было.

Забыл на схеме подписать, тот вывод моста, который соединен с выводом №1 микросхемы, это плюс (+) диодного моста, а минус (-) диодного моста соединен с минусом выхода.

Испытывая стабилизатор напряжения на LM2576, я использовал трансформатор с одной вторичной обмоткой, напряжением 20 Вольт и током 0.9 Ампер.

Выставил выходное напряжение 15 Вольт.

Нагрузил сопротивлением 7.5 Ом. Выходной ток составил почти 2 Ампера.

Напряжение при этом просело до 13.7 Вольт. Не обращайте внимания друзья, это все из-за слабого трансформатора, пока другого нет.

Вот переменное напр-ние на трансформаторе без нагрузки 23.7 Вольт.

А вот оно же под нагрузкой 15.2 Вольта.

 Видите, это не стабилизатор просаживает напругу, а трансформатор “не вывозит”. Был бы, трансформатор мощнее, напруга на выходе бы почти не проседала.

Даташит на LM2576 СКАЧАТЬ

Печатная плата СКАЧАТЬ


Похожие статьи

Регулируемый блок питания на LM2576

Приветствую, Самоделкины!
Продолжая тему блоков питания, Роман (автор YouTube канала «Open Frime TV») представляет вот такой компактный блок на популярной микросхеме LM2576.

Не так давно Роман делал dc-dc преобразователь на данной микросхеме, и она ему очень понравилась в работе. Минимум компонентов, хорошие показатели, все это подтолкнуло автора к созданию блока питания на данной микросхеме. Как видим вышла простая и компактная плата.
Итак, давайте сразу рассмотрим схему.

Топология схожа с той, что предлагают китайцы в своих dc-dc конвертерах.


Только тут оба операционных усилителя оказывают влияние на микросхему.

Такое решение добавляет стабильности в работе. Также видим индикацию ограничения по току. Удобная штука, особенно если собирать лабораторный блок питания.


А теперь пару слов про работу схемы. В момент включения на четвертом выводе микросхемы напряжения нету, и она начинает увеличивать ширину заполнения импульсов.


Это будет происходить до тех пор, пока на четвертый вывод не придет напряжение 1,2В. Почему так? Все потому, что такая топология самой микросхемы.

Теперь давайте рассмотрим, что делают операционные усилители на примере первого.

Как известно, одной из особенностей операционного усилителя является то, что он пытается выровнять напряжение на своих входах.

Так вот, мы задали определенное напряжение переменным резистором, и теперь операционный усилитель будет или увеличивать, или уменьшать свое выходное напряжение до тех пор, пока напряжение на инвертирующий входе и на не инвертирующем не сравняются.



Второй же операционный усилитель следит за падением напряжения на шунте.


И как только оно станет такое же, как и опорное, то на выходе операционного усилителя начнет увеличиваться напряжение до тех пор, пока не установится заданный ток.

Диод установлен для исключения влияния операционников друг на друга.

Также в схеме есть стабилитрон. Он нужен для того чтобы снизить напряжение на 7805.


Если напряжение питания меньше 22В, то его можно заменить перемычкой. Ну что же, думаю вопросов по работе возникнуть не должно.
Итак, когда разобрались со схемой, как всегда стоит поговорить про печатную плату. Сразу бросается в глаза применение 2-ух конденсаторов по выходу.

Автор сделал так из соображения компактности. Данные конденсаторы должны быть Low ESR, а как известно, их размер больше обыкновенных. Поэтому автор поставил 2 таких конденсатора по 470 мкФ каждый.

Также следует обратить внимание на правильную разводку печатной платы. Заключается она в том, что управляющий провод нельзя пересекать силовым, так как будут наводки и пропадет стабильность работы.


Автор как всегда сделал сначала пробный вариант схемы методом ЛУТ, проверил на косяки, особенно на левое и правое вращение резисторов, а потом заказал печатную плату на изготовление в китайской компании.


И вот платы приехали, они как всегда отличного качества так и манят их запаять. Ну что ж, не будем отказывать себе в таком удовольствии и запаяем одну из них.


И вот, запаяли все кроме дросселя, его необходимо намотать. В качестве основания подойдут кольца таких типов Т 90-52, Т 94-52, Т 106-52, ну или же всеми любимые кольца от компьютерных блоков питания.

Для намотки нам понадобится провод диаметром от 0,6 до 1,2 мм. Количество витков может варьироваться от 18 до 25.


Мотаем равномерно по всему кольцу. В итоге дроссель должен выглядеть таким образом:


Заканчиваем сборку платы и теперь необходимо произвести тесты. Для этого нам понадобится источник питания. Тут отлично подходит DPS5020, так как у него на экране выведены все параметры и за ними легче следить.

В первую очередь проверим регулировку напряжения.


Как видим, минимальное напряжение составляет около 0,6В. Можно было еще снизить, но тогда появляется нестабильность в работе. Максимальное напряжение на выходе практически равняется входному, но это без нагрузки, с ней оно немного просядет. Теперь проверим токовые показатели данной схемы. Для этого нам понадобится вот такая электронная нагрузка, которую автор изготовил ранее своими руками.

Выставим на выходе напряжение 15В и нагрузим током в 3А.

Как видим, наш самодельный блок питания справляется отлично. Вы могли заметить радиатор на микросхеме. Да, хоть это и импульсный блок питания, но КПД у него не составляет 100%, он тоже греется и поэтому без радиатора использовать его нельзя.

Ну а в итоге у нас получился отличный регулируемый блок питания на микросхеме LM2576, который подойдет тем, кто не гонится за большими токами, а 3-х ампер с головой хватит для проверки практически любой схемы.

Благодарю за внимание. До новых встреч!

Видео:


Источник Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Простой импульсный лабораторный БП на основе микросхем LM2576T-ADJ и LM2596T-ADJ | hardware

В статье описаны простые импульсные регулируемые стабилизаторы напряжения (понижающие, step-down) на 1.2 .. 40В, с током защиты . Они основаны на микросхемах LM2576T-ADJ и LM2596T-ADJ компании National Semiconductor.

[EK-2596Kit]

Схема электрическая принципиальная EK-2596Kit

Модуль может работать в режиме стабилизатора тока, что может использоваться для заряда аккумуляторов стабильным током, питания различных нагрузок, питания мощного светодиода или группы светодиодов.

Для включения модуля стабилизатором тока необходимо параллельно резистору R1 установить резистор, номинал которого вычисляется по формуле: R=1.23/I

Технические характеристики

Параметр Значение
Входное напряжение, не более 40В
Выходное напряжение 1…40В
Выходной ток во всем диапазоне напряжений, не более
Срабатывание защиты по выходному току
Частота преобразования 150 кГц
Размеры: Д, Ш, В 49х27х25мм
Масса 30 г

Перечень элементов стабилизатора напряжения

Позиция Номинал Количество
C1 470 мкФ х 50В 1 шт.
C2 470 мкФ х 50В 1 шт.
R1 1.2 кОм 1 шт.
D1 1N5822 1 шт.
IC1 LM2596T-ADJ 1 шт.
L1 120 uH 1 шт.
  Печатная плата 1 шт.
  PLS-06R 1 шт.

Работа устройства и рекомендации

Модуль является более миниатюрным аналогом модуля EK-2576 за счет большей частоты преобразования. И имеет меньшую амплитуду пульсаций на выходе.

Регулируемый импульсный стабилизатор напряжения предназначен как для установки в радиолюбительские устройства с фиксированным выходным напряжением так для лабораторного блока питания с регулируемым выходным напряжением. Так как стабилизатор работает в импульсном режиме, он имеет высокий КПД и, в отличие от линейных стабилизаторов, не нуждается в большом теплоотводе. Как правило, достаточно радиатора 100 см2. Устройство имеет тепловую защиту и защиту по выходному току = 3А. Внимание! Выходное напряжение не может превышать напряжение на входе. Для того чтобы начать эксплуатировать стабилизатор необходимо припаять переменный резистор = 47 Ком (для установки в устройства с фиксированным выходным напряжением — постоянный резистор) резистор не следует устанавливать на длинные провода.

Выводы модуля:

1 и 2 — контакты подключения подстроечного/переменного резистора.
3 — выход плюс.
4 — выход минус.
5 — питание минус.
6 — питание плюс.

Внимание! При подключении соблюдайте полярность! 

Габаритный чертеж и расположение элементов на печатной плате EK-2596Kit

Лабораторный блок питания с цифровой индикацией выходного напряжения. (EK2596 + SVH0001) 

Включение модуля стабилизатором тока для питания группы 3W светодиодов 

[EK-2576 Kit]

Схема электрическая принципиальная регулируемого импульсного стабилизатора

Технические характеристики

Параметр Значение
Входное напряжение, не более 40 В
Выходное напряжение 1…40 В
Выходной ток во всем диапазоне напряжений, не более 3 А
Срабатывание защиты по выходному току 3 А
Частота преобразования 52 КГц

Перечень элементов стабилизатора напряжения

Позиция Номинал Количество
C1 2200 мкФ х 50 В 1 шт.
C2 2200 мкФ х 50 В 1 шт.
R1 1.2 КОм 1 шт.
D1 1N5822 1 шт.
DA1 LM2576T-ADJ 1 шт.
L1 100 uH 1 шт.
  Печатная плата 1 шт.

Порядок работы устройства и рекомендации

Регулируемый импульсный стабилизатор напряжения предназначен как для установки в радиолюбительские устройства с фиксированным выходным напряжением так для лабораторного блока питания с регулируемым выходным напряжением. Так как стабилизатор работает в импульсном режиме, он имеет высокий КПД и, в отличие от линейных стабилизаторов, не нуждается в большом теплоотводе. Как правило, достаточно радиатора 100 см2. Устройство имеет тепловую защиту и защиту по выходному току = 3А. Выходное напряжение не может превышать напряжение на входе. Для того чтобы начать эксплуатировать стабилизатор необходимо припаять переменный резистор = 47 Ком (для установки в устройства с фиксированным выходным напряжением — постоянный резистор) резистор не следует устанавливать на длинные провода.

Подключение стабилизатора:

1. Подключить питание на входа «+Вход» и «-Вход»
2. Подключить переменный резистор на контакты «R» и «R»
3. Подключить нагрузку на выхода «+Вых» и «-Вых»

Для конструирования лабораторного блока питания с регулируемым выходным напряжением рекомендуется использовать цифровой встраиваемый вольтметр EK-2501.

Внимание! При подключении соблюдайте полярность!

Лабораторный блок питания с цифровой индикацией выходного напряжения

Расположение элементов на печатной плате

[Ссылки]

1. LM2596 — SIMPLE SWITCHER Power Converter 150 KHz 3A Step-Down Voltage Regulator.
2. Утилита для разработки стабилизаторов напряжения (и не только их) — WEBENCH® Power & LED Designer.
3. MAX710, MAX711 — 3.3V/5V or Adjustable, Step-Up/Down DC-DC Converters (автопереключение преобразования напряжения Step-Up/Down, вх. напряжение +1.8 V..+11 V, выходное напряжение 5 V/250 mA при вх.=1.8 V, 5 V/500 mA при вх.=3.6 V, не нужны внешние FET транзисторы, в режиме Shutdown отключение от вх. напряжения, потребление от вх. 200 μA без нагрузки (вх.=4 V), 7 μA в режиме Standby, 0.2 μA в выкл. режиме, режимы Low-Noise и High-Efficiency).
4. MC34063AB — MC34063AC, MC34063EB — MC34063EC, DC/DC converter control circuits (выходной ток ключа 1.5 A, 2% точность, типичный ток потребления 2.5 mA, вх. напряжение 3..40 V, частота преобразования до 100 кГц, ограничение выходного тока).
5. Высокоэффективный понижающий преобразователь с использованием синхронного контроллера LT1773.

Отправить ответ

avatar
  Подписаться  
Уведомление о