Lm317 регулятор напряжения: 403 — Доступ запрещён – Стабилизированный регулятор напряжения на LM317 1.2-37В 1.5А

Использование регулятора напряжения LM317

  
Особенности LM317

— Микросхема может работать в широком диапазоне выходных напряжений от 1.2 до 37 В.
— Микросхема обеспечивает выходной ток до 1.5 А.
— Максимальная рассеиваемая мощность до 20 Вт.
— Микросхема имеет встроенную защиту от перегрузок по току и от короткого замыкания.
— Встроенная защита от перегрева.

Минимальное включение подразумевает использование двух внешних резисторов. Отношение сопротивлений этих резисторов задает выходное напряжение регулятора, и двух конденсаторов на входе и выходе микросхемы.

Наиболее важные электрические параметры микросхемы — это опорное напряжение Vref и тое в цепи управляющего вывода Iadj. опорное напряжение — это напряжение, которое микросхема стремиться поддерживать на резисторе R1, то есть, если замкнуть накоротко резистор R2, то на выходе регулятора мы получит это самое опорное напряжение. Это напряжение может немного меняться от экземпляра к экземпляру и составляет 1.2 … 1.3 В ( в среднем 1.25В.) Чем выше падение напряжение на резисторе R2, тем выше выходное напряжение регулятора. Вычислить выходное напряжение просто, оно равно падению напряжения на R2 + 1.25 (Vref).


     
  
Что касается второго параметра Iadj, то это фактически паразитный ток. Чем он меньше, тем лучше. Изготовители микросхемы заявляют этот ток от 50 до 100 микроампер, но в действительности может быть до 500 мкА. Поэтому чтобы обеспечить  хорошую стабильность выходного напряжения, ток через делитель R1-R2 должен быть не менее 5 мА. Можно оттолкнуться от сопротивления резистора R1 и высчитать R2 по формуле:R2=R1*((Uвых/Uоп)-1)

Затем уточнить номиналы в реальных условиях в работающей схеме.

Приведем пример номиналов для пары стандартных напряжений:

Для напряжения 5В R1 = 120 Ом, R2 = 360 Ом
Для напряжения 12В R1 = 240Ом, R2 = 2000 Ом

Однако, для типовых напряжений вроде 5, 12, 15 и т.д. вольт проще и удобнее использовать регуляторы на фиксированные напряжения вроде 7805 или 7812. Использовать 317 для этих целей лучше только в том случае если регулятора на фиксированное напряжение не оказалось под рукой, а сделать источник питания нужно срочно.

Конфигурация выводов микросхемы LM317 в разных корпусах
  
  

Регулируемый источник питания на микросхеме LM317
  
  

Источник питания с плавным запуском. Как видим, к стандартной схеме добавляется биполярный транзистор структуры PNP, резистор на 50 кОм, кремниевый диод и электролитический конденсатор на 25 мкФ. В момент включения такого источника на его выходе минимальное напряжение, которое плавно увеличивается до установленного 15В по мере заряда конденсатора C1.

Также легко сделать на этой микросхеме источник с несколькими фиксированными напряжениями, которые можно переключать программно, с помощью микроконтроллера. Для этого в управляющую цепь включаем цепочки из транзисторов и резисторов, как показано на рисунке ниже. Базы транзисторов соединяем с портами микроконтроллера. При подаче высокого уровня на каждый последующий транзистор он будет подключать параллельно R2 еще один дополнительный резистор и выходное напряжение будет уменьшаться: 

  

   
  
LM317 можно использовать не только для стабилизации напряжения, но и в качестве стабилизатора тока. Схема получается еще проще, так как здесь нужен всего один единственный внешний резистор, задающий выходной ток:
 

   
  
На LM317 можно сделать несложное зарядное устройство для аккумуляторов с номинальным напряжением 12В.  Номиналы резисторов R1 и R2 задают конечное напряжение на заражаемой батарее, а  резистор Rs устанавливает максимальный зарядный ток.  Это схема из даташита на микросхему:
   
 

     
Двуполярный регулируемый источник питания (например как основа для лабораторного блока питания) можно собрать на двух LM317, но тогда придется использовать трансформатор с двумя обмотками и два выпрямителя, то есть каналы источника питания нужно будет делать независимыми друг от друга. Это хорошее, но дорогое решение. Можно упростить себе жизнь, если использовать микросхему LM337 — аналог микросхемы LM317, но на отрицательное напряжение. Тогда схема нашего регулируемого двуполярного источника может выглядеть например так:

   
 

   
Здесь дополнительные мощные транзисторы VT1 и VT2 позволяют увеличить выходной ток стабилизаторов. нужно выбирать транзисторы согласно тому току, на который вы рассчитываете источник питания.

На следующей схеме изображен регулируемый источник питания на ток до 20 ампер и напряжение от 1.3 до 12 вольт. Транзисторы и микросхему LM317 необходимо установить на радиаторы.  Резисторы в эмиттерных цепях транзисторов должны быть рассчитаны на мощность не менее 5 Вт.

     

DIY набор: регулятор напряжения на LM317

Всем привет.

Сегодняшний обзор будет посвящен очередному DIY набору — преобразователю напряжения на LM317. После того, как мною успешно были собраны часы, радиоприемник, металлоискатель и ёлочка, захотелось чего-то не только интересного, но и полезного в домашнем хозяйстве. Именно по этой причине выбор пал на преобразователь напряжения. Вообще, существует несколько вариантов такого набора, я выбрал не самый дешевый — со всему проводками и пластиковым корпусом.

Продавец был выбран совершенно спонтанно, но несмотря на это, сработал он оперативно. посылка была отправлена на следующий день после оплаты. Если кому-то посмотреть на маршрут ее следования из Китая в Беларусь, то сделать это можно здесь.

Поставляется набор в обычном полиэтиленовом пакете. Хоть данный товар нельзя отнести к категории хрупких, но радиатор охлаждения пришел ко мне с погнутыми ребрами (можно будет увидеть дальше не фото). Не могу утверждать, что причиной этого была упаковка, но от лишнего слоя пупырки я бы не отказался. Итак, сам набор на момент получения выглядел следующим образом:


В запечатанном пакете находятся провод для подключения преобразователя к сети, корпус, трансформаторная катушка и пакетик с мелкими компонентами.

После раскрытия которого можно увидеть все, что входит в состав набора:

Инструкция черно-белая, на английском языке. Содержит схему сборки преобразователя, а так же несколько фотографий процесса сборки.

Вооружившись паяльником и терпением, можно приступать к сборке. В целом, данный набор нельзя назвать сложным. Элементов тут не много, а благодаря схеме, сразу понятно что и куда нужно монтировать. Некоторые начинают установку начиная с самых мелких и переходя к крупным, но, как говорится, у каждого до*ика своя методика 🙂 Поэтому я делал так, как мне было удобно. Первый этап сборки (на фото хорошо видны погнутые ребра на радиаторе):

В основе нашего преобразователя лежит линейный стабилизатор напряжения (тока LM317). Если кто-то не в курсе что это такое и зачем оно надо, то вот немного теории:

Линейный стабилизатор представляет собой делитель напряжения, на вход которого подаётся входное (нестабильное) напряжение, а выходное (стабилизированное) напряжение снимается с нижнего плеча делителя. Стабилизация осуществляется путём изменения сопротивления одного из плеч делителя: сопротивление постоянно поддерживается таким, чтобы напряжение на выходе стабилизатора находилось в установленных пределах. При большом отношении величин входного/выходного напряжений линейный стабилизатор имеет низкий КПД, так как большая часть мощности Pрасс = (Uin — Uout) * It рассеивается в виде тепла на регулирующем элементе. Поэтому регулирующий элемент должен иметь возможность рассеивать достаточную мощность, то есть должен быть установлен на радиатор нужной площади. Преимущество линейного стабилизатора — простота, отсутствие помех и небольшое количество используемых деталей.
Недостаток — низкий КПД, большое тепловыделение
.

И вот, зная, что LM317 можно использовать в виде миниатюрного обогревателя, замечаем, что в комплекте нет ни грамма термопасты, ни миллиметра термоленты 🙁 из-за чего набор можно считать неполноценным. Можно, конечно, просто прижать стабилизатор к радиатору, но как-то это не очень хорошо. Так что чтобы избежать быстрого перегрева и сгорания стабилизатора, пришлось лезть в свои запасы.

Но продолжим. Этап два:

Вот тут тоже момент интересный, связанный с длиной проводов. Как видно на фото, к дисплею изначально подпаяны провода, длина которых примерно 10 сантиметров. В отверстия в плате находятся в нескольких миллиметрах от контактных площадок. Ну вот зачем такие провода? Что с ними делать? Куда прятать? В общем, провода были отрезаны, а на них место установлены остатки ножек уже установленных элементов.


К слову, то же самое касается и проводов, идущих от и к трансформаторной катушке.

Дальше ничего особо интересного не было, так что вот фото готовой платы:

Пробный запуск прошел успешно:

Пластинки, составляющие корпус трансформатора были с двух сторон оклеены бумагой, благодаря чему, на них не было ни единой царапинки. Но отрывается эта бумага достаточно трудно, так что надо быть готовым к тому, что придется немного помучиться. Соединяются части корпуса при помощи винтов и гаек, так что ничего сложного тут тоже нет. В корпусе предусмотрены отверстия для подключения проводов, регулировки подстроечника, отвода тепла. Вот так выглядит собранный преобразователь:


Настало время проверить как же он работает. Если верить продавцу, преобразователь работает в диапазонах 1,25В-12В. Для начала замер на минимально возможном напряжении:

Если верить преобразователю, то минимальное напряжение 1,16В, но HYELEC MS8232 показал на крокодилах 1,267В. В принципе, это значение рядом с заявленным.

Теперь о максимуме:

Как видно, при разнице между минимальным и максимальным напряжением в 12,04В разбежка данных на преобразователе и мультиметре составило 0,3В. Так же следует отметить, что изначально с повышением напряжения, оно начинало прыгать (на максимуме в пределах 0,5В). Данную проблему удалось решить при помощи подстроечника, так что тут он не зря 🙂

По началу впечатления были сугубо положительные. Но подключив к преобразователю нагрузку в виде автомобильной светодиодной лампочки, все немного изменилось.

Просадка напряжения составила без малого 3В, что никак нельзя назвать хорошим показателем 🙁 Так что, в перспективе, надо будет с этим что-то решать. Возможно, поможет установка дополнительного преобразователя на LM2596…

В целом же преобразователь оказался рабочим 🙂 Данную покупку можно рассматривать в 2 аспектах. Во-первых, как конструктор, на сборку которого придется потратить несколько часов. Лично мне такие нравятся, поэтому это время считаю потраченными с пользой и интересом. Во-вторых, в конечном результате, мы получаем полноценный преобразователь, который может пригодиться при тестировании лампочек, моторчиков и прочих безделушек, работающих от постоянного напряжения 1,25-12В. Так что я остался покупкой очень доволен и могу смело рекомендовать данный набор к покупке (пусть он и не лишен недостатков).

На этом, пожалуй, все. Спасибо за внимание и потраченное время.

cxema.org — Регулируемый стабилизатор (1,25-37V) на LM317

Vin (входное напряжение): 3-40 Вольт
Vout (выходное напряжение): 1,25-37 Вольт
Выходной ток: до 1,5 Ампер
Максимальная рассеиваемая мощность: 20 Ватт
Формула для расчета выходного (Vout) напряжения: Vout = 1,25 * (1 + R2/R1)
*Сопротивления в Омах
*Значения напряжения получаем в Вольтах

Регулируемый стабилизатор (1,25-37V) на LM317, схема

Данная простая схема позволяет выпрямить переменное напряжение в постоянное благодаря диодному мосту из диодов VD1-VD4, а затем точным подстрочным резистором типа СП-3 выставить нужное вам напряжение в пределах допустимых интегральной микросхемы-стабилизатора.

Регулируемый стабилизатор (1,25-37V) на LM317, диоды fr3002

В качестве выпрямительных диодов взял старые FR3002, которые когда-то давно выпаял из древнейшего компьютера 98-го года. При внушительных размерах (корпус DO-201AD) их характеристики (Uобратное: 100 Вольт; Iпрямой: 3 Ампера) не впечатляют, но мне и этого хватает с головой. Для них даже пришлось расширять отверстия в плате, уж больно выводы у них толстые (1,3мм). Если немного изменить плату в лейоте можно впаять сразу готовый диодный мост.

Регулируемый стабилизатор (1,25-37V) на LM317, радиатор

Радиатор для отведения тепла от микросхемы 317 обязателен, даже лучше небольшой вентилятор поставить. Еще, в месте соединения подложки корпуса TO-220 микросхемы с радиатором капните немного термопасты. Степень нагрева будет зависеть от того, сколько мощности рассеивает микросхема, а также от самой нагрузки.

Регулируемый стабилизатор (1,25-37V) на LM317

Микросхему LM317T я не устанавливал прямо на плату, а вывел от неё три провода, с помощью которых и соединил этот компонент с остальными. Это было сделано для того, чтобы ножки не расшатывались и вследствие чего не были переломанными, ведь данная деталь будет прикреплена к рассеивателю тепла.

Регулируемый стабилизатор (1,25-37V) на LM317, подстроечный резистор

Подстрочный резистор для возможности использования полного вольтажа микросхемы, то есть регулировки от 1,25 и аж до 37 Вольт устанавливаем с максимальным сопротивлением 3432 кОма (в магазине самый близкий номинал 3,3кОм.). Рекомендуемый тип резистора R2: подстрочный многооборотный (3296).

Саму микросхему-стабилизатор LM317T и подобные ей выпускает множество, если не все компании по производству электронных компонентов. Покупайте только у проверенных продавцов, потому что встречаются китайские подделки, особенно часто микросхемы LM317HV, которая рассчитана на входное напряжение аж до 57 Вольт. Опознать ненастоящую микросхему можно по железной подложке, в фейке она имеет множество царапин и неприятный серый цвет, также неправильную маркировку. Еще нужно сказать, что микросхема имеет защиту от короткого замыкания, а также перегрева, но на них сильно не рассчитывайте.

Регулируемый стабилизатор (1,25-37V) на LM317

Не забываем, что данный (LM317Т) интегральный стабилизатор способен рассеивать мощность с радиатором только до 20 Ватт. Плюсами этой распространённой микросхемы являются её маленькая цена, ограничение внутреннего тока короткого замыкания, внутренняя тепловая защита

Регулируемый стабилизатор (1,25-37V) на LM317, плата

Платку можно нарисовать качественно даже обычным пергаментным маркером, а потом вытравить в растворе медного купороса/хлорного железа…

Регулируемый стабилизатор (1,25-37V) на LM317, готовая плата

Фото готовой платы.

Регулируемый стабилизатор (1,25-37V) на LM317, готовый стабилизаторРегулируемый стабилизатор (1,25-37V) на LM317, готовый стабилизатор

Как вы знаете, существует множество интегральных микросхем-стабилизаторов напряжения в разных корпусах и с различными характеристики входного и выходного напряжения и тока. Внизу я прикрепил удобную таблицу названия самых распространенных и не только микросхем и их краткие характеристики.

Регулируемый стабилизатор (1,25-37V) на LM317, параметры lm317

Печатная плата в формате lay6

С уважением, ЕГОР Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра.

Схема регулятора напряжения на стабилизаторе LM317

 Схема регулятора напряжения-01 Схема регулятора напряжения-01

Простая схема регулятора напряжения собранная на микросхеме LM317 с выходом до 37v


Схема регулятора напряжения на стабилизаторе LM317, использующая несколько легко доступных и простых компонентов, разработана и протестирована нами, а теперь в этой статье представляем ее вам для повторения. Переменный источник питания с использованием LM317 является регулятором постоянного напряжения, который принимает нерегулируемое напряжение на входе и обеспечивает строго регулируемое значение на выходе при этом выполняет конфигурацию цепей LM317.


Мы знаем, что LM317 является популярным регулируемым стабилизатором положительного напряжения с возможностью подачи выходного тока 1,5 А на нагрузку в диапазоне от 1,25 В до 37 В на выходе. LM317 имеет только три вывода и выдает регулируемую переменную величину на выходе.

Простая схема регулятора напряжения выполненная на микросхеме LM317 включает в себя ограничитель по току, защиту от тепловой перегрузки и защиту от короткого замыкания. Защита от перегрузки остается работоспособной, даже если терминал ADJUST отключен. Эта микросхема поставляется с разными размерами корпусов, которые зависит от конструкции схемы и тепловых характеристик.

Схема выводов LM317

 Схема регулятора напряжения-1 Схема регулятора напряжения-1

Принципиальная электрическая схема

 Схема регулятора напряжения-2 Схема регулятора напряжения-2

Необходимые компоненты

  • Понижающий трансформатор 0-9 В 1 А
  • Модуль мостового выпрямителя или 1N4007X4
  • IC LM317
  • Переменный резистор 10 кОм
  • Резистор 240 Ом
  • Диод 1N4007 = 2
  • Конденсатор 47 мкФ, 10 мкФ, 1 мкФ каждый
  • Конденсатор 0.1 мкФ = 2

Построение и принцип работы

На представленной здесь схеме регулятора напряжения мы показываем как можно обеспечить регулируемое выходное напряжение от 1,5 до 9 В, вы можете подать желаемое входное напряжение до 37 В. Эта конструкция схемы начинается с понижающего трансформатора и модуля мостового выпрямителя для преобразования источника переменного тока в источник постоянного тока. Затем установленные фильтрующие конденсаторы C1, C2 и C3 устраняют пульсации переменного тока и искажения. Регулятор IC LM317, 1 вывод которого соединен с переменным резистором и выходом через резистор обратной связи R1. На выходе диод D2 обеспечивает защиту от обратного напряжения.

Микросхема LM317 регулирует входное питание постоянного тока от выпрямителя и получает обратную связь от выхода через D1, а регулируемый вывод принимает напряжение и ток обратной связи через переменный резистор и резистор R1. Следовательно, выход на нагрузке является постоянным, а диапазон выходного напряжения может регулироваться с помощью RV1. Используйте радиатор для микросхемы, если вы хотите получить на выходе выше 15 В.

Управление LM317T от ШИМ сигнала

Регулируемый интегральный стабилизатор напряжения LM317 компании National Semiconductor является очень популярной микросхемой, применяемой в источниках питания. LM317T позволяет изменять выходное напряжения в диапазоне от 1.25 до 37В при максимальном токе нагрузки до 1.5A. Регулировка выходного напряжения осуществляется на входе Vadj, для этого обычно применяют делитель напряжения, а для точной подстройки можно использовать потенциометр вместо постоянного резистора. См. онлайн калькулятор LM317/LM350/LM338

Однако, с развитием цифровой техники, иногда встает задача управления выходным напряжением преобразователя от микроконтроллера, либо любого другого цифрового устройства с ШИМ выходом. Представленная ниже схема позволяет заменить потенциометр или постоянные резисторы аналоговым напряжением после ШИМ сигнала. Т.о. можно осуществить real-time мониторинг выходного напряжения и точную его подстройку.

Схема управления LM317T от ШИМ сигнала

Используя операционный усилитель и простейший ФНЧ фильтр на RC-цепочке можно преобразовать ШИМ-сигнал в необходимый регулятору уровень постоянного напряжения на входе Vadj. После ФНЧ, ШИМ сигнал амплитудой 5В преобразуется в аналоговый сигнал 0-5В, а затем при помощи ОУ преобразуется до требуемого уровня. В качестве примера разберем ситуацию, когда ОУ умножает сигнал на 2. В таком случае на вывод Vadj преобразователя LM317 поступает напряжение от 0 до 10 Вольт. Следуя формуле Vout=Vadj+1.25В из даташита, получим размах выходного напряжения в диапазоне от 1.25 до 11.25 Вольт. Можно изменять коэффициент усиления ОУ при помощи резисторов R2 и R4, например при управлении от микроконтроллеров с 3.3В выходами.

В качестве ОУ можно применить известную м/с LM741, или любую другую, с подстройкой напряжения смещения входа. Номиналы RC-фильтра рассчитываются в зависимости от частоты ШИМ. В данной схеме частота ШИМ составляла 1 кГц.

Теги:

Схема управления LM317T от ШИМ сигналаnoauthor Схема управления LM317T от ШИМ сигнала Опубликована: 22.03.2013 Схема управления LM317T от ШИМ сигнала Схема управления LM317T от ШИМ сигнала0 Схема управления LM317T от ШИМ сигнала Вознаградить Я собрал 0 1

x

Оценить статью

  • Техническая грамотность
  • Актуальность материала
  • Изложение материала
  • Полезность устройства
  • Повторяемость устройства
  • Орфография

0

Оценить Сбросить

Средний балл статьи: 5 Проголосовало: 1 чел.

Регулируемый блок питания на стабилизаторе напряжения LM317 |

Начинающему радиолюбителю просто не обойтись без хотя бы простейшего блока питания. При разработке или настройке того или иного устройства регулируемый блок питания является не заменимым атрибутом. Но если вы начинающий радиолюбитель, и не можете позволить себе дорогой навороченный блок питания, то эта статья поможет вам восполнить вашу нужду

Блок питания на микросхеме LM317T, схема:

В интернете встречается неисчислимое множество схем различных блоков питания.  Но даже на первый взгляд легкие схемы, в процессе настройки оказываются не такими уж и легкими. Я рекомендую вам рассмотреть очень простую в настройке, дешевую и надёжную схему блока питания на микросхеме стабилизаторе LM317T, которая регулирует напряжение от 1,3  до 30 В и обеспечивает ток 1А (как правило, этого достаточно для простых радиолюбительских схем) рисунок №1.

Рисунок №1 – Электрическая принципиальная схема регулируемого блока питания.

VD1 – VD4, VD6, VD7 – Полупроводниковые диоды типа 1N5399 (1.5А 1000В) хотя, вы можете использовать любые другие подходящие по максимальному току 1.5 ампера и напряжению около 50 вольт. Можно также использовать диодный мост с теми же характеристиками. У кого что есть – тот из того и лепит:)
VD5 – Обыкновенный светодиод (его не обязательно впаивать) он сигнализирует о включении питания. Диод VD6, защищает схему от бросков тока. VD7 — защищает микросхему от паразитного разряда ёмкости конденсатора С3.

R1 – около 18  КОм (нужно подбирать под ток светодиода).
R2 — Можно не впаивать — он необходим в том случае если вам нужно получить нестандартные пределы регулировки напряжения. Вы просто подбираете его таким образом что бы сумма  R2 + R3 = 5КОм.

R3 — 5,6 Ком.
R4 – 240 Ом.
C1 – 2200 мкФ (электролитический)

C2 — 0,1 мкФ
C3 — 10 мкФ (электролитический)
C4 —  1 мкФ (электролитический)
DA1 – LM317T

Основным элементом в схеме является микросхема LM317T, все её характеристики вы можете без труда посмотреть в мануале на микросхему. Единственное что следует отдельно отметить, это то что её обязательно необходимо цеплять на радиатор (рисунок №2) что бы микросхема не вышла из строя.

Рисунок №2 – Пример радиатора.

Максимальный ток у неё по документации 1.5 А – но я не рекомендую вгонять её в такие придельные режимы работы.
Трансформатор я рекомендую использовать тоже с запасом по току (ток 3А), дабы в случае резкого броска тока он не вышел из строя.
Каждый радиолюбитель делает печатные платы как ему самому угодно – но если вам лень её трассировать – можете использовать мой вариант печатной платы рисунок №3, который доступен по этой ссылке или по этой ссылке. Файлы можно открыть с помощью программы Sprint-Layout 5.

 

Рисунок №3 — Плата печатная и сборочный чертёж

Прежде чем начать делать мой вариант разводки платы – ещё раз его просмотрите и проанализируйте!!! Плату я трассировал под способ фотолитографии, так что разверните её как необходимо вам. Я старался сделать плату наиболее универсальной для этой схемы и делал её под свои нужды. Если вы не будите впаивать резистор R2 – то вместо него просто нужна перемычка.

P.S.: Я постарался наглядно показать и описать не хитрые советы. Надеюсь, что хоть что-то вам пригодятся. Но это далеко не всё что возможно выдумать, так что дерзайте, и штудируйте сайт https://bip-mip.com/

Как можно подключить вольтметр и амперметр к этой схеме

  Дополнительные рекомендации по настройки схемы:

Все сопротивления в схеме лучше всего ставить полуваттные, это почти гарантия стабильной работоспособности схемы, даже в предельных условиях эксплуатации. Резистор R2 можно полностью исключить из схемы, я оставлял под него место на те случаи, когда нужно получит нестандартное напряжение. А ещё, хорошенько покопавшись в интернете, я нашел специальный калькулятор для пересчёта LM317, а именно резисторов в цепи управления регулировки напряжения.

Окно специального калькулятора для расчёта LM317Управляющий делитель напряжения

Резисторы R3 и R4 – это обыкновенный делитель напряжения, таким образом, мы можем его подобрать под те резисторы, что у нас есть под рукой (в заданных пределах) – это очень удобно и позволяет без особого труда отрегулировать работу LM317T под любое напряжение (верхний придел может варьироваться от 2 до 37 В). К примеру, можно так подобрать резисторы, чтобы ваш блок питания регулировался от 1,2 до 20В – всё зависит от пересчёта делителя R3 и R4. Формулу по которой работает калькулятор, вы можете узнать почитав даташит на ЛМ317Т. В остальном — если всё собрано верно , блок питания сразу же готов к работе.

СХЕМА РЕГУЛИРУЕМОГО БЛОКА ПИТАНИЯ НА LM317

Сразу отвечу на вопросы: да, этот блок питания я делал для себя, хоть и есть у меня приличный лабораторный блок; это чисто для питания детских электрических батареечных игрушек, чтоб не дёргать основной мощный. И теперь, когда я вроде оправдался за столь несолидную, как для опытного радиопаятеля конструкцию — можно перейти к подробному её описанию:-)

Схема источника напряжения на ЛМ317

Схема источника напряжения на ЛМ317 с регулировкой

В общем имелась приличная самодельная металлическая коробочка со стрелочным индикатором, в которой давно обитала зарядка (самодельная естественно). Но работала она слабовато, поэтому после покупки цифровой универсальной Imax B6 — внутри неё задумал разместить БП до 12 вольт, чтоб электронные детские игрушки питать (роботы, моторчики и так далее).

Схема источника напряжения на ЛМ317 с регулировкой

Схема источника напряжения на ЛМ317 с регулировкой

Сначала подбирал трансформатор. Импульсный не хотел ставить — мало ли бахнет вдруг или где коротнёт, вещь-то в детскую комнату планируется. Поставил ТП20-14, который после пары минут и бахнул)) Точнее задымел от межвиткового, так как этот трансформатор валялся лет 20 в тумбочке. Ну ничего — заменил на надёжный китайский 13В/1А от магнитолы какой-то (тоже лет 15 ей было).

Схема источника напряжения на ЛМ317 с регулировкой

Следующий этап сборки блока питания — выпрямитель с фильтром. Это значит диодный мост с конденсатором на 1000-5000 микрофарад. Паять его на рассыпухе не хотел — поставил готовую платку.

Схема источника напряжения на ЛМ317 с регулировкой

Схема источника напряжения на ЛМ317 с регулировкой

Отлично, уже имеем 15 вольт постоянки! Едем дальше… Теперь регулировка этих вольт. Можно было собрать на паре транзисторов простейший регулятор, но чтой-то облом. Самое быстрое решение — микросхема LM317. Всего 3 детали — регулятор переменный, резистор 240 Ом и сама микросхема-стабилизатор, которая на счастье завалялась в коробке. И даже не паянная!

Схема источника напряжения на ЛМ317 с регулировкой

Вот только она не заработала… Я сидел и тупо на неё смотрел: неужели дохлая попалась? Сначала трансформатор, теперь она… Нет, решительно непрушный день!

На следующее утро, на трезвую голову, заметил что 2 и 3 выводы перепутаны местами)) Перепаял и всё стало регулироваться. От 1,22 до 12В ровно. Осталось подпаять стрелочный индикатор, переключаемый тумблером как вольт/амперметр и светодиоды индикации питания и выходного напряжения. Просто красный через пару килоом на выход повесил, чтоб было видно примерно что делается, такая себе дополнительная защита от подачи 10 В на 3-х вольтовую игрушку.

Схема источника напряжения на ЛМ317 с регулировкой

И о защитах. Их тут нет. Даже при КЗ напряжение проседает и светодиоды тусклеют. Ток замыкания около 1,5 Ампер. Но придумывать электронные предохранители не стал — сам слабенький трансформатор играет роль токоограничителя. Если вам захочится повторить конструкцию по всем правилам — берите схему защиты отсюда.

Схема источника напряжения на ЛМ317 с регулировкой

Ещё из особенностей микросхемы отмечу падение напряжения около 2 В. Это не много и не мало — средне, как для таких стабилизаторов.

Схема источника напряжения на ЛМ317 с регулировкой

Конденсатор на выходе поставил 47 мкФ на 25 В. Защитный диод ставить не стал, говорят он не обязателен. Резистор переменный 6,8 кОм — но он работает в узком секторе поворота ручки, лучше заменить на 2-3 кОм. Или поставить последовательно ещё один, постоянного сопротивления.

Итоги работы

Схема источника напряжения на ЛМ317 с регулировкой

Подведём краткие итоги: схема однозначно рабочая и рекомендована к повторению начинающими мастерами, которые делают первые шаги, или теми кому лень тратить время/деньги на более сложные схемы БП. То, что минимальный порог 1,2 В — не проблема. Я например не помню случая, чтоб мне понадобилось меньше вольта))

   Схемы блоков питания

Отправить ответ

avatar
  Подписаться  
Уведомление о