Расчет частоты ne555: Онлайн калькулятор расчета параметров 555 таймера – Расчёт параметров таймера NE555

Онлайн калькулятор расчета параметров 555 таймера

Для реализации логических цепей, участвующих в работе сигнализаций, датчиков, преобразователей, усилители применяются специальные таймеры. Данное устройство позволяет генерировать на выходе импульсы прямоугольной формы с определенными параметрами. За счет чего такое приспособление выступает и в роли таймера, и в роли генератора импульсов. Для того чтобы рассчитать периоды положительного и отрицательного импульса, необходимо оперировать величиной сопротивлений и емкостью конденсатора.

Схема 555 таймераСхема 555 таймера

Посмотрите на рисунок, здесь приведена принципиальная схема работы 555 таймера (аналог микросхема КР1006ВИ1 )

Выводы:

1 — Земля.

2 — Запуск.

3 — Выход.

4 — Сброс.

5 — Контроль.

6 — Останов.

7 — Разряд.

8 — Плюс питания.

Как видите, конструктивно он состоит из резисторов R1, R2 и конденсатора C.

Поэтому, чтобы рассчитать длительность высокого и низкого уровня, необходимо воспользоваться такими расчетными формулами:

Длительность высокого уровня импульса на выходе работы схемы вычисляется по формуле:

T1 = 0,7 * (R1+R2) * C, где

R1 и R2 – величина сопротивления соответствующих резисторов, указанных на схеме;

C – емкость конденсатора.

Для вычисления низкого уровня импульса на выходе работы схемы используется формула:

T2 = 0,7 * R1 * C

Для определения величины полного периода применяется формула:

T = 0,7 * C * (2*R1+R2)

Для расчета частоты смены импульсов на выходе таймера 555 используется формула:

F = 1.45 / ((R1+2*R2)*C)

Подбирая параметры сопротивлений и емкости в цепи, вы сможете собрать 555 таймер с требуемыми величинами высокого и низкого сигнала на выходе. Чтобы не считать параметры по формулам выше, вы можете воспользоваться нашим онлайн-калькулятором.

Расчёт параметров таймера NE555

Подробности
Категория: Разное

Таймер NE555 может работать как моностабильный мультивибратор, а также как  генератор прямоугольных импульсов c выходным током 200 мА(max).
I потребления = I вых + 3 мА(maх).
Напряжение питания от 4,5B(min) до 16B(max).
Точность параметров таймера — не более 1% от расчетного значения и  не зависит от напряжения питания.

Блок схема таймера NE555.

1

Земля.

Подключается  к минусу питания схемы.

8

Питание.

Напряжение питания таймера NE 555 постоянное и может быть в интервале  от 4,5B(min) до 16B(max).

2

Запуск.

При подаче на этот вход импульса лог. «0», происходит запуск таймера и на выводе №3 появляется напряжение лог. «1» на время, которое задается внешним сопротивлением R1+R2 и конденсатором С.  Данный режим работы называется моностабильным.

7

Разряд.

Вывод соединен с  коллектором транзистора эмиттер которого соединен с общим проводом.  При открытом транзисторе конденсатор С разряжается через переход коллектор-эмиттер. Транзистор закрыт, когда на выходе таймера лог. «1» и открыт, когда на выходе лог. «0».

3

Выход. 

 

Логическая 1 равена Uпит — 1,7В. Логический ноль равен 0,25В. Время переключения 100 нс.

6

Стоп.

При подаче на этот вывод импульса лог. «1» (не менее 2/3 напряжения питания), работа таймера останавливается, и на выходе таймера устанавливается  напряжение лог. «0».

4

Сброс.

При подаче на этот вывод напряжения лог. «0» (не более 0,7в) произойдет  сброс таймера и на выходе его установится напряжение  лог. «0». Если в схеме нет необходимости в режиме сброса, то вывод «сброс» необходимо подключить к плюсу питания.

5

Контроль.

Применение вывода расширяет функциональность таймера. Изменением напряжения от 45% до 90% на этот вывод можно управлять длительностью выходных импульсов таймера, а значит отказаться от  RC времязадающей цепочки.

 

 


Введите значения R1, R2 и С и нажмите «Расчет»

Микроконтроллеры и Технологии — Расчет таймера NE555(КР1006ВИ1)

Заполните одно из значений ниже, и нажмите кнопку «Рассчитать» и калькулятор определит вам целый ряд возможных вариантов для сопротивлений резисторов R1, R2 и значение емкости конденсатора C1. Для ввода дробного значения используйте символ точка. Например 0.5 секунды.

Назначение выводов:

Вывод №1 — Земля(GND).

Вывод подключается к минусу питания или к общему проводу схемы.

Вывод №2 — Запуск(TRIG).

Этот вывод является одним из входов компаратора №2. При подаче на этот вход импульса низкого уровня, который должно быть не более 1/3 напряжения питания, происходит запуск таймера и на выводе №3 появляется напряжение высокого уровня на время, которое задается внешним сопротивлением Ra+Rb и конденсатором С. Данный режим работы называется — режим моностабильного мультивибратора. Импульс, подаваемый на вывод №2, может быть как прямоугольным, так и синусоидным и по длительности он должен быть меньше чем время заряда конденсатора С.

Вывод №3 — Выход(OUT).

Высокий уровень равен напряжению питания минус 1,7 Вольта. Низкий уровень равен примерно 0,25 вольта. Время переключения с одного уровня на другой происходит примерно за 100 нс.

Вывод №4 — Сброс(RST).

При подаче на этот вывод напряжения низкого уровня (не более 0,7в) произойдет сброс таймера и на выходе его установится напряжение низкого уровня. Если в схеме нет необходимости в режиме сброса, то данный вывод необходимо подключить к плюсу питания.

Вывод №5 — Управление(CVOLT).

Обычно, этот вывод не используется. Однако его применение может значительно расширить функциональность таймера. При подаче напряжения на этот вывод можно управлять длительностью выходных импульсов таймера, а значит отказаться от RC времязадающей цепочки. Подаваемое напряжение на этот вход в режиме моностабильного мультивибратора может составлять от 45% до 90% напряжения питания. А в режиме мультивибратора от 1,7в и до напряжения питания. Соответственно на выходе получится FM модулированный сигнал.

Если этот вывод не используется, то его лучше подключить через конденсатор 0,01мкФ к общему проводу.

Вывод №6 — Стоп(THR).

Этот вывод является одним из входов компаратора №1. При подаче на этот вывод импульса высокого уровня (не менее 2/3 напряжения питания), работа таймера останавливается, и на выходе таймера устанавливается напряжение низкого уровня. Как и на вывод №2, на этот вывод можно подавать импульсы как прямоугольные, так и синусоидные.

Вывод №7 — Разряд(DISC).

Этот вывод соединен с коллектором транзистора Т1, эмиттер которого соединен с общим проводом. При открытом транзисторе конденсатор С разряжается через переход коллектор-эмиттер и остается в разряженном состоянии пока не закроется транзистор. Транзистор закрыт, когда на выходе таймера высокий уровень и открыт, когда на выходе низкий уровень.

Вывод №8 — Питание(VCC).

Напряжение питания таймера составляет от 4,5 до16 вольт.

Теория и практика применения таймера 555. Часть первая.

РадиоКот >Статьи >

Теория и практика применения таймера 555. Часть первая.

Наверное нет такого радиолюбителя (Мяу, и его кота! — Здесь и далее прим. Кота), который не использовал бы в своей практике эту замечательную микросхему. Ну а уж слышали о ней так точно все.

Её история началась в 1971 году, когда компания Signetics Corporation выпустила микросхему SE555/NE555 под названием «Интегральный таймер» (The IC Time Machine).
На тот момент это была единственная «таймерная» микросхема доступная массовому потребителю. Сразу после поступления в продажу микросхема завоевала бешеную популярность и среди любителей и среди профессионалов. Появилась куча статей, описаний, схем, использующих сей девайс.
За прошедшие 35 лет практически каждый уважающий себя производитель полупроводников считал свои долгом выпустить свою версию этой микросхемы, в том числе и по более современным техпроцессам. Например, компания Motorola выпускает CMOS версию MC1455. Но при всем при этом в функциональности и расположении выводов никаких различий у всех этих версий нет. Все они полные аналоги друг друга.

Наши отечественные производители тоже не остались в стороне и выпускают эту микросхему под названием КР1006ВИ1.

А вот список заморских производителей, которые выпускают таймер 555 и их коммерческие обозначения:

Производитель

Название микросхемы

ECG Philips

ECG955M

Exar

XR-555

Fairchild

NE555

Harris

HA555

Intersil

SE555/NE555

Lithic Systems

LC555

Maxim

ICM7555

Motorola

MC1455/MC1555

National

LM1455/LM555C

NTE Silvania

NTE955M

Raytheon

RM555/RC555

RCA

CA555/CA555C

Sanyo

LC7555

Texas Instruments

SN52555/SN72555

В некоторых случаях указано два названия. Это означает, что выпускается две версии микросхемы — гражданская, для коммерческого применения и военная. Военная версия отличается большей точностью, широким диапазоном рабочих температур и выпускается в металлическом или керамическом корпусе. Ну и дороже, разумеется.

Начнем с корпуса и выводов.

Микросхема выпускается в двух типах корпусов — пластиковом DIP и круглом металлическом. Правда, в металлическом корпусе она все же выпускалась — сейчас остались только DIP-корпуса. Но на случай, если вам вдруг достанется такое счастье, привожу оба рисунка корпуса. Назначения выводов одинаковые в обоих корпусах. Помимо стандартных, выпускается еще две разновидности микросхем — 556 и 558. 556 — это сдвоенная версия таймера, 558 — счетверенная.

Функциональная схема таймера показана на рисунке прямо над этим предложением.
Микросхема содержит около 20 транзисторов, 15 резисторов, 2 диода. Состав и количество компонентов могут несущественно меняться в зависимости от производителя. Выходной ток может достигать 200 мА, потребляемый — на 3- 6 мА больше. Напряжение питания может изменяться от 4,5 до 18 вольт. При этом точность таймера практически не зависит от изменения напряжения питания и составляет 1% от расчетного. Дрейф составляет 0,1%/вольт, а температурный дрейф — 0,005%/С.

Теперь мы посмотрим на принципиальную схему таймера и перемоем ему кости, вернее ноги — какой вывод для чего нужен и что все это значит.

Итак, выводы (Мяу! Это он про ноги…):

1. Земля. Особо комментировать тут нечего — вывод, который подключается к минусу питания и к общему проводу схемы.

2. Запуск. Вход компаратора №2. При подаче на этот вход импульса низкого уровня (не более 1/3 Vпит) таймер запускается и на выходе устанавливается напряжение высокого уровня на время, которое определяется внешним сопротивлением R (Ra+Rb, см. функциональную схему) и конденсатором С — это так называемый режим моностабильного мультивибратора. Входной импульс может быть как прямоугольным, так и синусоидальным. Главное, чтобы по длительности он был короче, чем время заряда конденсатора С. Если же входной импульс по длительности все-таки превысит это время, то выход микросхемы будет оставаться в состоянии высокого уровня до тех пор, пока на входе не установится опять высокий уровень. Ток, потребляемый входом, не превышает 500нА.

3. Выход. Выходное напряжение меняется вместе с напряжением питания и равно Vпит-1,7В (высокий уровень на выходе). При низком уровне выходное напряжение равно примерно 0,25в (при напряжении питания +5в). Переключение между состояниями низкий — высокий уровень происходит приблизительно за 100 нс.

4. Сброс. При подаче на этот вывод напряжения низкого уровня (не более 0,7в) происходит сброс выхода в состояние низкого уровня не зависимо от того, в каком режиме находится таймер на данный момент и чем он занимается. Reset, знаете ли, он и в Африке reset. Входное напряжение не зависит от величины напряжения питания — это TTL-совместимый вход. Для предотвращения случайных сбросов этот вывод настоятельно рекомендуется подключить к плюсу питания, пока в нем нет необходимости.

5. Контроль. Этот вывод позволяет получить доступ к опорному напряжению компаратора №1, которое равно 2/3Vпит. Обычно, этот вывод не используется. Однако его использование может весьма существенно расширить возможности управления таймером. Все дело в том, что подачей напряжения на этот вывод можно управлять длительностью выходных импульсов таймера и таким образом, забить на RC времязадающую цепочку. Подаваемое напряжение на этот вход в режиме моностабильного мультивибратора может составлять от 45% до 90% напряжения питания. А в режиме мультивибратора от 1,7в до напряжения питания. При этом мы получаем ЧМ (FM) модулированный сигнал на выходе. Если же этот вывод таки не используется, то его рекомендуется подключить к общему проводу через конденсатор 0,01мкФ (10нФ) для уменьшения уровня помех и всяких других неприятностей.

6. Останов. Этот вывод является одним из входов компаратора №1. Он используется как эдакий антипод вывода 2. То есть используется для остановки таймера и приведения выхода в состояние (Мяу! Тихой паники?!) низкого уровня. При подаче импульса высокого уровня (не менее 2/3 напряжения питания), таймер останавливается, и выход сбрасывается в состояние низкого уровня. Так же как и на вывод 2, на этот вывод можно подавать как прямоугольные импульсы, так и синусоидальные.

7. Разряд. Этот вывод подсоединен к коллектору транзистора Т6, эмиттер которого соединен с землей. Таким образом, при открытом транзисторе конденсатор С разряжается через переход коллектор-эмиттер и остается в разряженном состоянии пока не закроется транзистор. Транзистор открыт, когда на выходе микросхемы низкий уровень и закрыт, когда выход активен, то есть на нем высокий уровень. Этот вывод может также применяться как вспомогательный выход. Нагрузочная способность его примерно такая же, как и у обычного выхода таймера.

8. Плюс питания. Как и в случае с выводом 1 особо ничего не скажешь. Напряжение питания таймера может находиться в пределах 4,5-16 вольт. У военных версий микросхемы верхний диапазон находится на уровне 18 вольт.

Впитали? Едем дальше.
Большинство таймеров нуждаются во времязадающей цепочке, обычно состоящей из резистора и конденсатора. Таймер 555 не исключение. Давайте посмотрим на диаграмму работы микросхемы.

Итак, предположим, что мы подали питание на микросхему. Вход находится в состоянии высокого уровня, на выходе — низкий уровень, конденсатор С разряжен. Все спокойно, все спят. И тут БАХ — мы подаем серию прямоугольных импульсов на вход таймера. Что происходит?
Первый же импульс низкого уровня переключает выход таймера в состояние высокого уровня. Транзистор Т6 закрывается и конденсатор начинает заряжаться через резистор R. Все то время пока конденсатор заряжается, выход таймера остается во включенном состоянии — на нем сохраняется высокий уровень напряжения. Как только конденсатор зарядится до 2/3 напряжения питания, выход микросхемы выключается и на нем появляется низкий уровень. Транзистор T6 открывается и конденсатор С разряжается.
Однако есть два нюанса, которые показаны на графике пунктирными линиями.
Первый — если после окончания заряда конденсатора на входе сохраняется низкий уровень напряжения — в таком случае выход остается активным — на нем сохраняется высокий уровень до тех пор, пока на входе не появится высокий уровень. Второй — если мы активируем вход Сброс напряжением низкого уровня. В этом случае выход сразу же выключится, не смотря на то, что конденсатор все еще заряжается.
Так, лирическую часть закончили — перейдем к суровым цифрам и расчетам. Как же нам определить время, на которое будет включаться таймер и номиналы RC цепочки, необходимые для задания этого времени? Время, за которое конденсатор заряжается до 63,2% (2/3) напряжения питания называется временной константой, обозначим её буковкой t. Вычисляется это время потрясающей по своей сложности формулой. Вот она: t = R*C, где R — сопротивление резистора в МегаОм-ах, С — емкость конденсатора в микроФарад-ах. Время получается в секундах.

К формуле мы еще вернемся, когда будем подробно рассматривать режимы работы таймера. А сейчас пока посмотрим на простенький тестер для этой микросхемы, который запросто скажет вам — работает ваш экземпляр таймера или нет.

Если после включения питания мигают оба светодиода — значит все хорошо и микросхема во вполне рабочем состоянии. Если же хотя бы один из диодов не горит или наоборот — горит постоянно, значит такую микросхемы можно спустить в унитаз с чистой совестью или вернуть назад продавцу, если вы её только что купили. Напряжение питания — 9 вольт. Например, от батареи «Крона».

Теперь рассмотрим режимы работы этой микросхемы.
Собственно говоря, режимов у нее две штуки. Первый — моностабильный мультивибратор. Моностабильный — потому что стабильное состояние у такого мультивибратора одно — выключен. А во включенное состояние мы его переводим временно, подав на вход таймера какой-либо сигнал. Как уже отмечалось выше, время, на которое мультивибратор переходит в активное состояние, определяется RC цепочкой. Эти свойства могут быть использованы в самых разнообразных схемах. Для запуска чего-либо на определенное время или наоборот — для формирования паузы на заданное время.

Второй режим — это генератор импульсов. Микросхема может выдавать последовательность прямоугольных импульсов, параметры которых определяются все той же RC цепочкой. (Мяу! Хочу цепочку. На хвост. Ну или браслетик. Антистатический.)
Все-таки Кот у нас — зануда.
Начнем сначала, то есть с первого режима.

Схема включения микросхемы показана на рисунке. RC цепочка включена между плюсом и минусом питания. К соединению резистора и конденсатора подключен вывод 6 — Останов. Это вход компаратора №1. Сюда же подключен вывод 7 — Разряд. Входной импульс подается на вывод 2 — Запуск. Это вход компаратора №2. Совершенно простецкая схема — один резистор и один конденсатор — куда уж проще? Для повышения помехоустойчивости можно подключить вывод 5 на общий провод через конденсатор емкостью 10нФ.
Итак, в исходном состоянии, на выходе таймера низкий уровень — около нуля вольт, конденсатор разряжен и заряжаться не хочет, поскольку открыт транзистор Т6. Это состояние стабильное, оно может продолжаться неопределенно долгое время. При поступлении на вход импульса низкого уровня, срабатывает компаратор №2 и переключает внутренний триггер таймера. В результате на выходе устанавливается высокий уровень напряжения. Транзистор Т6 закрывается и начинает заряжаться конденсатор С через резистор R. Все то время, пока он заряжается, на выходе таймера сохраняется высокий уровень. Таймер не реагирует ни на какие внешние раздражители, буде они поступают на вывод 2. То есть, после срабатывания таймера от первого импульса дальнейшие импульсы не оказывают никакого действия на состояние таймера — это очень важно. Так, что там у нас происходит то? А, да — заряжается конденсатор. Когда он зарядится до напряжения 2/3Vпит, сработает компаратор №1 и в свою очередь переключит внутренний триггер. В результате на выходе установится низкий уровень напряжения, и схема вернется в свое исходное, стабильное состояние. Транзистор Т6 откроется и разрядит конденсатор С.

Время, на которое таймер, так сказать «выходит из себя», может быть от одной миллисекунды до сотен секунд.
Считается оно так: T=1.1*R*C
Теоретически, пределов по длительности импульсов нет — как по минимальной длительности, так и по максимальной. Однако, есть некоторые практические ограничения, которые обойти можно, но сначала стоит задуматься — нужно ли это делать и не проще ли выбрать другое схемное решение.
Так, минимальные значения, установленные практическим образом для R составляет 10кОм, а для С — 95пФ. Можно ли меньше? В принципе — да. Но при этом, если еще уменьшить сопротивление резистора — схема начнет трескать слишком много электричества. Если уменьшить емкость С, то всякие паразитные емкости и помехи могут существенно повлиять на работу схемы.
С другой стороны, максимальное значение резистора примерно равно 15Мом. Здесь ограничение накладывает ток, потребляемый входом Останов (около 120нА) и ток утечки конденсатора С. Таким образом, при слишком большом значении резистора таймер просто никогда не выключится, если сумма токов утечки конденсатора и тока входа превысит 120 нА.
Ну а что касается максимальной емкости конденсатора, то дело не столько в самой емкости, сколько в токе утечки. Понятно, что чем больше емкость, тем больше ток утечки и тем хуже будет точность таймера. Поэтому, если таймер будет использоваться для больших временных интервалов, то лучше пользоваться конденсаторами с малыми токами утечки — например, танталовыми.

Перейдем ко второму режиму.

В эту схему добавлен еще один резистор. Входы обоих компараторов соединены и подключены к соединению резистора R2 и конденсатора. Вывод 7 включен между резисторами. Конденсатор заряжается через резисторы R1 и R2.
Теперь посмотрим, что же произойдет, когда мы подадим питание на схему. В исходном состоянии конденсатор разряжен и на входах обоих компараторов низкий уровень напряжения, близкий к нулю. Компаратор №2 переключает внутренний триггер и устанавливает на выходе таймера высокий уровень. Транзистор Т6 закрывается и конденсатор начинает заряжаться через резисторы R1 и R2.

Когда напряжение на конденсаторе достигает 2/3 напряжения питания, компаратор №1 в свою очередь переключает триггер и выключает выход таймер — напряжение на выходе становится близким к нулю. Транзистор Т6 открывается и конденсатор начинает разряжаться через резистор R2. Как только напряжение на конденсаторе опустится до 1/3 напряжения питания, компаратор №2 опять переключит триггер и на выходе микросхемы снова появится высокий уровень. Транзистор Т6 закроется и конденсатор снова начнет заряжаться… фууу, чет у меня голова закружилась уже.
Короче говоря, в результате всего этого шаманства, на выходе мы получаем последовательность прямоугольных импульсов. Частота импульсов, как вы вероятно уже догадались, зависит от величин C, R1 и R2. Определяется она по формуле:

Значения R1 и R2 подставляются в Омах, C — в фарадах, частота получается в Герцах.
Время между началом каждого следующего импульса называется периодом и обозначается буковкой t. Оно складывается из длительности самого импульса — t1 и промежутком между импульсами — t2. t = t1+t2.
Частота и период — понятия обратные друг другу и зависимость между ними следующая:
f = 1/t.
t1 и t2 разумеется тоже можно и нужно посчитать. Вот так:
t1 = 0.693(R1+R2)C;
t2 = 0.693R2C;

Ну, с теоретической частью вроде бы покончили. В следующей части рассмотрим конкретные примеры включения таймера 555 в различных схемах и для самого разнообразного использования.
Если у вас еще остались вопросы — их можно задать тут.


Как вам эта статья?

Заработало ли это устройство у вас?


Эти статьи вам тоже могут пригодиться:

555-й таймер. Часть 1. Как устроен и как работает таймер NE555. Расчёт схем на основе NE555

Эта статья посвящена микросхеме, сохраняющей популярность уже более 30 лет и имеющей множество клонов. Встречайте — таймер NE555 (он же — LM555, LC555, SE555, HA555, а также
множество других, есть даже советский аналог — КР1006ВИ1). Такую популярность этой микросхеме обеспечили простота, дешивизна, широкий диапазон напряжений питания (4,5-18В), высокая точность и стабильность (температурный дрейф 0,005% / oС, дрейф от напряжения питания — менее 0,1% / Вольт), ну и конечно же, самое главное, — широчайшие возможности применения.

Но, обо всём по порядку. Начнём мы с того, как эта микросхема устроена.

Итак, функциональная схема таймера показана на рисунке 1.

Ноги:

1. GND — земля/общий провод.

2. Trigger — инвертирующий вход компаратора, ответственного за установку триггера. Когда напряжение на этой ноге становится меньше 1/3 Vcc (то есть меньше, чем напряжение на неинвертирующем входе компаратора) — на вход SET триггера поступает логическая 1. Если при этом отсутствуют сигналы сброса на входах Reset, то триггер установится (на его выходе появится логический 0, так как выход инвертированный).

3. Output — выход таймера. На этом выводе присутствует инвертированный сигнал с выхода триггера, то есть когда триггер взведён (на его выходе ноль) — на выводе Output высокий уровень, когда триггер сброшен — на этом выводе низкий уровень.

4. Reset — сброс. Если этот вход подтянуть к низкому уровню, триггер сбрасывается (на его выходе устанавливается 1, а на выходе таймера низкий уровень).

5. Control — контроль/управление. Этот вывод позволяет изменять порог срабатывания компаратора, управляющего сбросом триггера. Если вывод 5 не задействован, то этот порог определяется внутренним делителем напряжения на резисторах и равен 2/3 Vcc. Вывод Control можно использовать, например, для организации обратной связи по току или напряжению (об этом я позднее расскажу).

6. Threshold — порог. Когда напряжение на этом выводе становится выше порогового (которое при незадействованном выводе 5, как вы помните, равно 2/3 Vcc) — происходит сброс триггера и на выходе таймера устанавливается низкий уровень.

7. Discharge — разряд. На этом выходе 555-й таймер имеет транзистор с открытым коллектором. Когда триггер сброшен — этот транзистор открыт и на выходе 7 присутствует низкий уровень, когда триггер установлен — транзистор закрыт и вывод 7 находится в Z-состоянии. (Почему эта нога называется «разряд» вы скоро поймёте.)

8. Vcc — напряжение питания.

Далее, давайте рассмотрим, в чём же основная идея использования этого таймера. Для этого добавим к нашей схеме пару элементов внешней обвязки (смотрим рисунок 2). 4-ю и 5-ю ноги мы пока не будем использовать, поэтому будем считать, что 4-я нога у нас гвоздём прибита к напряжению питания, а 5-я просто болтается в воздухе (с ней и так ничего не будет).

Итак, пусть изначально у нас на второй ноге присутствует высокий уровень. После включения наш триггер сброшен, на выходе триггера высокий уровень, на выходе таймера низкий уровень, на 7-й ноге тоже низкий уровень (транзистор внутри микрухи открыт).

Чтобы произошло переключение триггера — необходимо подать на вторую ногу уровень ниже 1/3 Vcc (тогда переключится компаратор и сформирует высокий уровень на входе Set нашего триггера). Пока уровень на 2-й ноге остаётся выше 1/3 Vcc — наш таймер находится в стабильном состоянии и никаких переключений не происходит.

Ну что ж, — давайте кратковременно подадим на 2-ю ногу низкий уровень (на землю её коротнём, да и всё) и посмотрим что будет происходить.

Как только уровень на 2-й ноге упадёт ниже 1/3 Vcc — у нас сработает компаратор, подключенный к устанавливающему входу триггера (S), что, соответственно, вызовет установку триггера.

На выходе триггера появится ноль (поскольку выход триггера инвертирован), при этом на выходе таймера (3-я нога) установится высокий уровень. Кроме этого транзистор на 7-й ноге закроется и 7-я нога перейдёт в Z-состояние.

При этом через резистор Rt начнёт заряжаться конденсатор Ct (поскольку он больше не замкнут на землю через 7-ю ногу микрухи).

Как только уровень на 6-й ноге поднимется выше 2/3 Vcc — сработает компаратор, подключенный ко входу R2 нашего триггера, что приведёт к сбросу триггера и возврату схемы в первоначальное состояние.

Вот мы и рассмотрели работу схемы, называемой одновибратором или моностабильным мультивибратором, короче говоря, устройства, формирующего единичный импульс.

Как нам теперь узнать длительность этого импульса? Очень просто, — для этого достаточно посчитать, за какое время конденсатор Ct зарядится от 0 до 2/3 Vcc через резистор Rt от постоянного напряжения Vcc.

Сначала решим эту задачку в общем виде. Пусть у нас конденсатор заряжается через резистор R напряжением Vп от начального уровня U0.

Вспоминаем, как связаны ток и напряжение на конденсаторе: i=C*dU/dt. Ток через резистор: i=(Vп-U)/R. Поскольку это один и тот же ток, который течёт через резистор и заряжает конденсатор, то мы можем составить простое дифференциальное уравнение, описывающее процесс заряда нашего конденсатора: C*dU/dt=(Vп-U)/R.

Преобразуем наше уравнение к виду: RC*dU/dt + U = Vп

Это дифференциальное уравнение имеет решение, вида: U=U0+(Vп-U0)*(1-e-t/RC) ( формула 1 )

Теперь вернёмся к нашей схеме. Зная, что U0=0, напряжение питания равно Vcc, а конечное напряжение равно 2/3 Vcc, найдём время заряда:

2/3 Vcc = Vcc*(1-e-t/RC)

2/3 = 1-e-t/RC

1-2/3 = e-t/RC

ln(1/3) = -t/RC

Отсюда получаем длительность импульса нашего одновибратора:

t = RC*(-ln(1/3)) ≈ 1,1*RC

А теперь мы нашу схему немного изменим. Добавим в неё ещё один резистор, и чуть изменим подключение ног (смотрим рисунок 3).

Так, что у нас получилось? На старте конденсатор Ct разряжен (напряжение на нём меньше 1/3 Vcc), значит сработает компаратор запуска и сформирует высокий уровень на входе S нашего триггера. Напряжение на 6-й ноге меньше 2/3 Vcc, значит компаратор, формирующий сигнал на входе R2, — выключен (на его выходе низкий уровень, то есть сигнала Reset нет).

Следовательно сразу после включения наш триггер установится, на его выходе появится логический 0, на выходе таймера установится высокий уровень, транзистор на 7-й ноге закроется и конденсатор Ct начнёт заряжаться через резисторы R1, R2. При этом напруга на 2-й и 6-й ногах начнёт расти.

Когда эта напруга вырастет до 1/3 Vcc — пропадёт сигнал Set (отключится компаратор установки триггера), но триггеру пофиг, на то он и триггер, — если уж он установился, то сбросить его можно только сигналом Reset.

Сигнал Reset сформируется верхним на нашем рисунке компаратором, когда напряжение на конденсаторе, а вместе с ним на 2-й и 6-й ногах, достигнет значения 2/3 Vcc (то есть как только напряжение на конденсаторе станет чуть больше — сразу сформируется Reset).

Этот сигнал (Reset) сбросит наш триггер и на его выходе установится высокий уровень. При этом на выходе таймера установится низкий уровень, транзистор на 7-й ноге откроется и конденсатор Ct начнёт разряжаться через резистор R2. Напряжение на 2-й и 6-й ногах начнёт падать. Как только оно станет чуть меньше 2/3 Vcc — верхний компаратор снова переключится и сигнал Reset пропадёт, но установить триггер теперь можно только сигналом Set, поэтому он так и останется в сброшенном состоянии.

Как только напряжение на Ct снизится до 1/3 Vcc (станет чуть ниже) — снова сработает нижний компаратор, формирующий сигнал Set, и триггер снова установится, на его выходе снова появится ноль, на выходе таймера — единица, транзистор на 7-й ноге закроется и снова начнётся заряд конденсатора.

Далее этот процесс так и будет продолжаться до бесконечности — заряд конденсатора через R1,R2 от 1/3 Vcc до 2/3 Vcc (на выходе таймера высокий уровень), потом разряд конденсатора от 2/3 Vcc до 1/3 Vcc через резистор R2 (на выходе таймера низкий уровень).

Таким образом наша схема теперь работает как генератор прямоугольных импульсов, то есть мультивибратор в автоколебательном режиме (когда импульсы сами возникают, без каких-либо внешних воздействий).

Осталось только посчитать длительности импульсов и пауз. Для этого снова воспользуемся формулой 1, которую мы вывели выше.

При заряде конденсатора напряжением Vcc через R1,R2 от 1/3 Vcc до 2/3 Vcc, имеем:

2/3 Vcc = 1/3 Vcc + (Vcc-1/3 Vcc)*(1-e-t/(R1+R2)C)

1/3 = 2/3*(1-e-t/(R1+R2)C)

1/2 = 1-e-t/(R1+R2)C

e-t/(R1+R2)C = 1/2

t/(R1+R2)C = -ln(1/2)

Отсюда получаем длительность импульса нашего мультивибратора:

tи = -ln(1/2)*(R1+R2)*C ≈ 0,693*(R1+R2)C

Аналогично находим длительность паузы, только теперь у нас начальный уровень 2/3 Vcc, конденсатор мы не заряжаем от Vcc, а разряжаем на землю (т.е. вместо Vп в формулу нужно подставить ноль, а не Vcc) и разряд идёт только через резистор R2:

1/3 Vcc = 2/3 Vcc + (0-2/3 Vcc)*(1-e-t/R2*C)

2/3*(1-e-t/R2*C) = 1/3

1-e-t/R2*C = 1/2

e-t/R2*C = 1/2

t/R2*C = -ln(1/2)

Отсюда получаем длительность паузы мультивибратора:

tп = -ln(1/2)*R2*C ≈ 0,693*R2*C

Ну и дальше уже несложно посчитать для нашего мультивибратора период импульса и частоту:

T = tи + tп = -ln(1/2)*(R1+2*R2)*C ≈ 0,693*(R1+2*R2)*C

f = 1/T

Продолжение: Генератор прямоугольных импульсов с регулируемой скважностью, на 555-м таймере.

Генератор на базе таймера NE555

Микросхема интегрального таймера 555 была разработана 44 года назад, в 1971 году и до сих пор популярна. Пожалуй, ещё ни одна микросхема так долго не служила людям. Чего только на ней не собирали, даже поговаривают, что номер 555 — это число вариантов её применения 🙂 Одно из классических применений 555 таймера — регулируемый генератор прямоугольных импульсов.
В этом обзоре будет описание генератора, конкретное применение будет в следующий раз.

Плату прислали запечатанной в антистатический пакетик, но микросхема очень дубовая и статикой её так просто не убить.

Качество монтажа нормальное, флюс не отмыт


Схема генератора стандартная для получения скважности импульсов ≤2

Даташит NE555

Красный светодиод подключен на выход генератора и при малой выходной частоте — мигает.
По китайской традиции, производитель забыл поставить ограничивающий резистор последовательно с верхним подстроечником. По спецификации, он должен быть не менее 1кОм, чтобы не перегружать внутренний ключ микросхемы, однако, реально схема работает и при меньшем сопротивлении — вплоть до 200 Ом, при котором происходит срыв генерации. Добавить ограничивающий резистор на плату затруднительно из-за особенности разводки печатной платы.
Диапазон рабочих частот выбирается установленной перемычной в одной из четырёх позиций
Частоты продавец указал неверно.

Реально измеренные частоты генератора при питающем напряжении 12В
1 — от 0,5Гц до 50Гц
2 — от 35Гц до 3,5kГц
3 — от 650Гц до 65кГц
4 — от 50кГц до 600кГц
On-Line расчёт цепей генератора (примерный)
Нижний резистор (по схеме) задаёт длительность паузы импульса, верхний резистор задаёт период следования импульсов.
Напряжение питания 4,5-16В, максимальная нагрузка на выходе — 200мА

Стабильность выходных импульсов на 2 и 3 диапазонах невысока из-за применения конденсаторов из сегнетоэлектрической керамики типа Y5V — частота сильно уползает не только при изменении температуры, но даже при изменении питающего напряжения (причём в разы). Рисовать графики не стал, просто поверьте на слово.
На остальных диапазонах стабильность импульсов приемлемая.

Вот что он выдаёт на 1 диапазоне
На максимальном сопротивлении подстроечников

В режиме меандр (верхний 300 Ом, нижний на максимуме)

В режиме максимальной частоты (верхний 300 Ом, нижний на минимум)

В режиме минимальной скважности импульсов (верхний подстроечник на максимуме, нижний на минимуме)

Для китайских производителей: добавьте ограничивающий резистор 300-390 Ом, замените керамический конденсатор 6,8мкФ на электролитический 2,2мкФ/50В, и замените конденсатор 0,1мкФ Y5V на более качественный 47нФ X5R (X7R)
Вот готовая доработанная схема

Себе генератор не переделывал, т.к. указанные недостатки для моего применения не критичны.

Вывод: полезность устройства выясняется, когда какая-либо Ваша самоделка потребует подать на неё импульсы 🙂
Продолжение следует…

Микросхема 555 / Habr

Всем привет. Сегодня я хочу рассказать вам о микросхеме 555. Её история началась ещё в далеком 1971 году, когда компания Signetics Corporation выпустила микросхему SE555/NE555 под названием «Интегральный таймер» (The IC Time Machine). В те времена это была единственная «таймерная» микросхема, которая была доступна массовому потребителю. Сразу после выхода 555 завоевала бешеную популярность и её начали выпускать почти все производители полупроводников. Отечественные производители тоже выпускали данную микросхему под названием КР1006ВИ1.

Что это за чудо?

Микросхема выпускается в двух вариантах корпуса — пластиковом DIP и круглом металлическом. Правда встретить 555 в круглом металлическом корпусе в наши времена очень сложно, чего не скажешь о версии в пластиковом DIP корпусе. Внутри корпуса с восемью выводами скрываются транзисторы, диоды и резисторы. Не будем вдаваться в доскональное изучение 555, но про ножки этой микросхемы я расскажу более подробно. Всего ножек 8.

1. Земля. Вывод, который во всех схемах нужно подключать к минусу питания.
2. Триггер, он же запуск. Если напряжение на пуске падает ниже 1/3 Vпит, то таймер запускается. Ток, потребляемый входом, не превышает 500нА.
3. Выход. Напряжение выхода примерно на 1,7 В ниже напряжения питания, когда он включен. Максимальная нагрузка, которую может выдержать выход — 200 мА.
4. Сброс. Если подать на него низкий уровень напряжения (меньше 0,7 В), то схема переходит в исходное состояние не зависимо от того, в каком режиме находится таймер на данный момент. Если в схеме не нужен сброс, то рекомендуется подключить этот вывод к плюсу питания.
5. Контроль. Этот вывод позволит нам получить доступ к опорному напряжению компаратора №1. Используется этот вывод очень редко, а вися в воздухе может сбивать работу, поэтому в схеме его лучше всего присоединить к земле.
6. Порог, он же стоп. Если напряжение на этом выходе выше 2/3 Vcc, то таймер останавливается и выход переводится в состояние покоя. Стоит заметить, что работает выход только тогда, когда вход выключен.
7. Разряд. Этот выход соединяется с землей внутри самой микросхемы, когда на выходе микросхемы низкий уровень и закрыт, когда на выходе высокий уровень. Может пропускать до 200 мА и иногда используется как дополнительный выход.
8. Питание. Данный выход нужно подключать к плюсу питания. Микросхема поддерживает напряжение в пределах 4,5-16 В. Может работать от обычной 9В-батарейки или от проводка USB.

Режимы

Ну что же пришло время поведать вам о режимах микросхемы 555. Их всего 3 и о каждом я расскажу более подробно.
Моностабильный

При подаче сигнала на вход нашей микросхемы, она включается, генерирует выходной импульс заданной длины и выключается, ожидая входного импульса. Важно, что после включения микросхема не будет реагировать на новые сигналы. Длину импульса можно рассчитать по формуле t=1.1*R*C. Пределов по длительности импульсов нет — как по минимальной, так и по максимальной длительности. Есть некоторые практические ограничения, которые можно обойти, но стоит задуматься над тем, нужно ли это и не проще ли выбрать другое решение. Итак, минимальные значения, установленные практическим образом для R составляет 10кОм, а для С — 95пФ. Можно и меньше, но при этом схема начнет поглощать много электричества.

Нестабильный мультивибратор

В этом режиме все довольно таки просто. Управлять таймером не нужно. Он все сделает сам — сперва включится, подождет время t1, потом выключится, подождет время t2 и начнет все заново. На выходе у нас получится забор из высоких и низких состояний. Частота с которой будет колебаться зависит от параметров величин R1,R2 и C и определяется она по формуле F= 1,44/((R1+R2)C). В течение времени t1 = 0.693(R1+R2)C на выходе будет высокий уровень, а в течение времени 2 = 0.693R2C — низкий.

Бистабильный

В данном режиме наша микросхема 555 используется как выключатель. Нажал одну кнопку — выход включился, нажал другую — выключился.
Конец

Думаю Вам уже надоел теоретический материал и Вы хотите приступить к практике. Саму микросхему и детали к ней Вы можете купить в любой радиолавке. Ну, а если Вам вдруг лень идти в магазин Вы можете заказать все детали на этом сайте. Забыл сказать, что посылка будет идти к Вам где-то месяц. Спасибо за внимание, если Вам понравилась моя статья, то позже я обязательно напишу ещё одну, где я расскажу какие гаджеты можно сделать на микросхеме 555.

Отправить ответ

avatar
  Подписаться  
Уведомление о