Схемы задержки включения реле: 403 — Доступ запрещён – 403 — Доступ запрещён

Простое реле времени с задержкой включения своими руками

Здравствуйте уважаемые читатели сайта sesaga.ru. Совсем недавно возникла необходимость в реле времени с задержкой включения, через которое планировалось питать вытяжные вентиляторы в туалете и ванной комнате. Идея заключалась в том, чтобы зря не гонять вентиляторы если находишься в указанных помещениях менее минуты: здесь и экономия электроэнергии и меньший износ деталей вентилятора.

Вытяжной вентилятор

Покупать реле выходило дороговато, а в интернете схему с нужными параметрами не нашел. Поэтому пришлось заняться разработкой схемы реле времени самостоятельно, после чего на свет родилась вот такая простенькая конструкция. Причем такое реле может собрать любой начинающий радиолюбитель всего за один день.

Реле времени

Внимание! Эта конструкция имеет бестрансформаторное питание от сети переменного тока. Собирая ее, обращайте особое внимание на соблюдение техники безопасности при работе с электроустановками

.

1. Принципиальная схема реле времени с задержкой включения.

Реле времени содержит 12 деталей и состоит из двух частей: узла питания и узла реле времени.

Узел реле времени собран на интегральном таймере DA1 и реле KL1. Если узел питания убрать, то узел реле времени можно использовать для включения нагрузки на напряжение питания 12 Вольт, например, включение магнитолы, света или подсветки в салоне автомобиля.

Устройство работает так: при включении выключателя SA1 запускается счетчик таймера DA1 и с этого момента начинается отчет времени задержки, по истечении которого на выходе таймера DA1 формируется сигнал, включающий реле KL1, которое своими контактами KL1.1 включает вытяжной вентилятор.

Схема реле времени с задержкой включения

Узел питания собран по бестрансформаторной схеме с гасящим конденсатором С3. Резистор R2 служит для ускорения процесса разрядки конденсатора С3 при выключении устройства. Напряжение после конденсатора С3 выпрямляется диодами VD4 и VD5 и стабилизируется стабилитроном VD3. Конденсатором С2 сглаживаются пульсации выходного напряжения, которое составляет 12 Вольт.

На интегральном таймере NE555 (отечественный аналог КР1006ВИ1) собран узел задержки включения реле. Узел задержки представляет схему одновибратора, управляемого по цепи питания.

В момент подачи питания таймер DA1 начинает отчет времени, по истечении которого на выходе (вывод №3) формируется положительный импульс выходного напряжения, включающий реле

KL1, которое замыканием своих контактов KL1.1 подает питание на вытяжной вентилятор.

За счет того, что таймер NE555 обеспечивает на выходе ток нагрузки до 200mA, не пришлось устанавливать транзистор для управления выходным реле KL1.

Время задержки включения реле задается емкостью электролитического конденсатора С1 и величиной сопротивления резистора R1. При указных номиналах этих деталей на принципиальной схеме время задержки составляет 70 секунд.

Диод VD1 устраняет влияние возможных выбросов напряжения питания таймера в течение отчета времени задержки, а диод VD2 служит для надежного срабатывания реле KL1. Время задержки в секундах рассчитывается по формуле: Т = 1,1*R1*C1.

2. Конструкция и детали.

Все детали реле времени размещены на печатной плате размерами 84х29 мм, которая вмонтирована в корпус вентилятора.

Реле времени вмонтированое в вытяжной вентилятор

Печатная плата рассчитана на установку постоянных резисторов типа МЛТ или на аналогичные импортные. Времязадающий резистор R1 составлен из резисторов 1МОм и 510 кОм мощностью по 0,125 Вт и включенных последовательно. Резистор R2 мощностью 0,5 Вт и сопротивлением 470 кОм.

Постоянный конденсатор С3 может быть емкостью от 0,68 до 1,0 микрофарад и напряжением не менее 400В. Времязадающий электролитический конденсатор С1 емкостью 47 микрофарад и напряжением 15В, а С2 емкостью 220 микрофарад и напряжением не менее 25 Вольт.

В конструкции использованы импортные диоды типа 1N4007. Можно устанавливать любые выпрямительные диоды, рассчитанные на ток 1 Ампер и напряжение не менее 300 Вольт. Стабилитрон

VD3 с напряжением стабилизации 12 В. Обмотка реле KL1 на напряжение 12 В, а контакты KL1.1 должны коммутировать напряжение 220 В.

Печатная плата реле времени

Печатная плата реле времени со стороны дорожек

Расположение деталей на печатной плате

При исправных деталях и правильном монтаже реле времени начинает работать сразу и в налаживании не нуждается. Реле подключается параллельно лампе туалета или ванной комнаты в точках

1 и 2, указанных на схеме. Чтобы в процессе налаживания схемы не ждать полторы минуты, уменьшите сопротивление резистора R1 до 100 кОм.

Вы можете сделать свой чертеж печатной платы, используя материал этого видеоролика, в котором показан процесс, начиная от компоновки деталей на плате и заканчивая рисованием дорожек. Посмотрев этот видеоролик, Вы сможете составить чертеж печатной платы практически для любой конструкции такой сложности.

В этом ролике показан процесс подготовки печатной платы: сверление отверстий, нанесение рисунка дорожек, травление дорожек. Далее идет распайка деталей на плату и монтаж реле времени в корпус вытяжного вентилятора.

Как Вы уже поняли, это реле времени с задержкой включения универсально, и поэтому его можно приспособить под любые нужды. Также можно ознакомиться со схемой и конструкцией реле времени с задержкой выключения, материал которой для публикации на странице сайте предоставил один из читателей.

Удачи!

Литература: Коломбет Е. А. Таймеры. 1983г.

Устройство задержки включения другого устройства

РадиоКот >Схемы >Цифровые устройства >Автоматика >

Устройство задержки включения другого устройства

   Изучая принцип работы RC-цепей и логических элементов, решил я перейти от теоретической части к более интересной — практической. В итоге закрепил знания и получил моральное удовлетворение от своего творения) Я постараюсь описать принцип работы отдельных узлов схемы насколько у меня это получится. Если будут какие поправки со стороны более опытных котов, — пишите в форум).

И так, начнём со схемы девайса. 

 

Также вашему вниманию представляю структурную схему К561ЛА7:

 

 Хочу сразу назвать аналоги К561ЛА7 — это микросхема CD4011A; диод 1N4001  — аналог КД243, транзистор КТ816 — аналог КТ814, КТ8121, BD612, BD614, TIP32. Схема незамысловата, однако (как обещал) поясню принцип работы отдельных ее узлов. Начнём с RC-цепочки. Она является главным узлом, без нее ничего б не получилось. Ниже представлено ее схематичное изображение. 

Конденсатор накапливает электрические заряды, резистор контролирует их поток. В итоге получается схема, контролирующая заряд конденсатора. Электроны движутся от плюса источника питания через резистор, который контролирует их поток, на первую обкладку конденсатора. Далее электроны переходят на вторую обкладку конденсатора, то есть происходит его заряд. Пока происходит заряд конденсатора, на выходе Vвых напряжение постепенно возрастает с 0В до напряжения источника питания (ИП). Другими словами, повышение напряжения на выходе Vвых прямопропорционально уровню заряда конденсатора. Время, через которое на выходе Vвых напряжение будет равно напряжению ИП, высчитывается по формуле:

Допустим, у нас есть резистор на 2 мегаома и конденсатор на 15 микрофарад. Переводим мегаомы в омы (по системе Си): 2мОм=2 000 000 Ом. Микрофарады — в фарады: 15мкф=0,000015 Ф. Подставляем значения в формулу постоянной времени RC-цепочки и получаем: 

Т = 2 000 000 * 0,000015 = 30 (секунд). Получается, что в течение 30 секунд после подачи питающего напряжения, будет происходить заряд конденсатора. По истечении данного промежутка времени, он зарядится и на выходе Vвых установится напряжение, равное питающему. 

  Все бы хорошо. Можно на Vвых вешать какую-нибудь нагрузку, и схема готова! Но, нет. Не так всё просто. Допустим, питающее напряжение RC-цепи равно 5 В (вольт). На Vвых тоже будет 5 В. А каков же будет ток? Здесь нас выручает закон Ома. Возьмём сопротивление резистора 10кОм и напряжение 5 В. Сила тока вычисляется по формуле: 

Считаем: I = 5/10 000 = 0,0005 (А). То есть сила тока на Vвых равна 0,0005 Ампер или 0,5 мА (миллиампер). Боюсь, таким током мало что запитаешь. И здесь на помощь приходят микросхемы стандартной логики. Их уникальность состоит в том, что на их вход можно подавать логический ноль или логическую единицу с мизерными токами (порядка трех микроампер), а на их выходе управляющий ток достаточен для подключения транзисторного ключа, к примеру. Именно так я и сделал. В своей схеме я использовал отечествуенную микросхему

К561ЛА7. Она и стоит недорого, и достать нетрудно, и есть зарубежный аналог CD4011A. Функциональное её назначение — 4 независимых элемента И-НЕ. Ниже представлено схематичное изображение элемента и таблица истинности: 

Вход А Вход В Выход
Низкий уровень Низкий уровень Высокий уровень
Низкий уровень Высокий уровень Высокий уровень
Высокий уровень Низкий уровень Высокий уровень
Высокий уровень Высокий уровень Низкий уровень

   Исходя из таблицы истинности, мы понимаем следующее: если на входе А и на входе В присутствует напряжение низкого уровня, то на выходе присутствует напряжение высокого уровня и наоборот. Ну а теперь смотрим на целиковую схему в начале статьи и соображаем: на оба входа логического элемента И-НЕ по истечении времени заряда конденсатора, подаётся напряжение, равное питающему (то есть

Высокий уровень). На выходе элемента — Низкий уровень. Если поставим транзистор p-n-p проводимости, то получим транзисторный ключ. А это — верный шаг, который помогает всерьёз управлять какой-нибудь нагрузкой. Однако управление другим устройством при помощи транзистора означает, что: 1). диапазон питающего напряжения нагрузки равен питающему напряжению схемы задержки включения, 2). надо учитывать максимальную рассеиваемую мощность транзистора. И дабы избежать этих двух нюансов, я поставил реле. Оно коммутирует включение/выключение другого устройства. И тут есть свои плюсы: 1). гальваническая развязка, 2). возможность подключения устройств с большим напряжением и большим током. 

   Как я говорил чуть выше, микросхема К561ЛА7 — это 4 независимых друг от друга элемента И-НЕ. Согласитесь, как-то жалко из четырёх задействовать только один логический элемент. Недолго думая, я решил задействовать второй. На оба его входа также подаётся либо лог.1, либо лог.0 с RC-цепочки, на его выходе — светодиод HL1 (красный). В данном сучае он является сигнализатором заряда конденсатора (или сигнализирует о том, что управляемое устройство пока еще не включено). Что касается светодиода HL2 (зелёного), то он сигнализирует о питании катушки реле (или сигнализирует о том, что управляемое устройство включено). 

   Теперь вернёмся к вопросу о времени задержки включения. Значения сопротивления 10кОм или 10000 Ом, конденсатора — 2000мкФ или 0,002 Фарада. Перемножая оба числа, получаем время заряда Т = 20 секунд. В иделае реле должно сработать лишь через 20 секунд, но надо учитывать: происходит постепенное повышение напряжения на Vвых до напряжения ИП, а не скачообразное с 0В до напряжения ИП. Также надо учесть, что в микросхемах КМОП-технологии лог.0 — это практически нулевой потенциал, лог.1 — это напряжение, приближенное (или равное) питающему. Это означает, что на выходе элемента И-НЕ установитя сигнал низкого уровня, когда напряжение на Vвых ещё будет повышаться. И, как показала практика, при сопротивлении 10кОм и конденсаторе в 2000мкФ через 7 секунд на выходе И-НЕ устанавливаетя низкий уровень. Фууух, понимать-то понимаю, а доступно описать иногда проблематично. Надеюсь, вы меня поняли. 

   Таким образом, при вычислении Т (постоянной времени) мы имеем приблизительное представление смены на выходе логического элемента лог.1 на лог.0. А точное время узнаем эеспериментальным путём. Я собирал всё это дело на макетке и замерял секундомером этот самый промежуток времени. Он (как я уже говорил выше) равен 7 секундам. 

   Хочу отметить, что использованием лишь И-НЕ данная схема не ограничивается. Вполне реально использовать и инверторы сигнала («НЕ»), и элементы «ИЛИ». Я собирал из того, что было под рукой, а под рукой у меня оказалась именно К561ЛА7. НО: при использовании других логиеских элементов может потребоваться установка транзистора другой проводимости (n-p-n) и соответственно изменение его включения в схему, изменение включения реле, светодиода HL2 и диода VD1. Эти изменения надо делать, исходя из таблицы истинности того логиеского элемента, который вы будете использовать в схеме! 

   Что ещё хотелось отметить… Диапазон питающего напряжения устройства: 3 — 15 Вольт. Входной ток низкого и высокого уровней минимум 0,3мкА (по даташиту). И самое главное — практическое применение устройства. Например, вы уходите из дома и включаете сигнализацию. Но вам надо закрыть за собой дверь. Для этого нужно время. Другими словами, вам надо организовать задержку включения сигнализации. На помощь приходит данное устройство. В общем каждый может придумать своё применение сему девайсу. Поэтому оставлю это дело за вами 🙂

   Ниже вы можете найти печатную плату устройства и схему. Также представляю фото и видео работы Если что, вот ссылка на видео: https://www.youtube.com/watch?v=kgyGkrnQdag. Если будут вопросы, как всегда — в форум. Всего вам хорошего! 

 

Файлы:

Схема устройства

Архив 7Zip
Фотография

Все вопросы в Форум.


Как вам эта статья?

Заработало ли это устройство у вас?

Схемы реле времени и задержки выключения нагрузки

Принципиальные схемы реле задержки времени, автоматических включателей и выключателей нагрузки 220В с заданым интервалом времени. Схемы просты в сборке и построены на основе микросхемы LM555.

Реле времени для автоматического отключения нагрузки

Иногда бывает необходимо выключить приемник или лампу подсветки через определенный интервал времени. Эту задачу может решить схема, приведенная на рис. 1.

Схемы реле времени и задержки выключения нагрузки

Рис. 1. Схема таймера для автоматического отключения нагрузки.

При указанных на схеме номиналах времязадающих элементов задержка отключения составит около 40 минут (для микромощных таймеров это время может быть значительно увеличено, так как они позволяют R2 установить с большим номиналом).

В ждущем режиме устройство не потребляет энергии, так как при этом транзисторы VT1 и VT2 заперты. Включение производится кнопкой SB1 — при ее нажатии открывается транзистор VT2 и подает питание на микросхему. На выходе 3 таймера при этом появляется напряжение, которое открывает транзисторный ключ VT1 и подает напряжение в нагрузку, например на лампу BL1.

Кнопка блокируется, и схема будет находиться в таком состоянии, пока заряжается конденсатор С2, после чего отключит нагрузку. Резистор R3 ограничивает ток разряда емкости времязадающего конденсатора, что повышает надежность работы устройства. Для получения больших интервалов задержки конденсатор С2 необходимо применять с малым током утечки, например танталовый из серии К52-18.

Таймер с увеличенным временным интервалом

Схема устройства аналогичного назначения показана на рис. 2. Она позволяет дискретно изменять время задержки отключения нагрузки от 5 до 30 мин (с шагом 5 мин) при помощи переключателя SA1. Благодаря использованию микромощного таймера, обладающего большим входным сопротивлением, имеется возможность использовать времязадающие резисторы значительно больших номиналов (от 8,2 до 49,2 МОм), что позволяет увеличить и временной интервал: Т= 1,1 * С2 * (R1 + … + Rn).

Схемы реле времени и задержки выключения нагрузки

Рис. 2. Схема таймера с увеличенным временным интервалом для отключения нагрузки.

Схемы реле времени на симисторах

Схемы, позволяющие непосредственно (без реле) управлять отключением сетевой нагрузки, приведены на рис. 3 и 4. В них в качестве коммутатора использован симистор. По сравнению с оригиналом, в приведенных здесь вариантах некоторые номиналы изменены для работы устройств от сетевого напряжения 220 В.

В схеме на рис. 3 включение нагрузки происходит сразу при замыкании контактов SA1, а выключение с задержкой, определяемой номиналами R2-C2 (для указанных на схеме она составляет 11 секунд). Цепь R1-C1 обеспечивает запуск одновибратора при включении.

Схемы реле времени и задержки выключения нагрузки

Рис. 3. Бестрансформаторная схема управления сетевой нагрузкой.

 

Схемы реле времени и задержки выключения нагрузки

Рис. 4. Вариант схемы для автоматического отключения сетевой нагрузки.

Во второй схеме (рис. 4) включение нагрузки будет при первоначальном подключении к сети или при нажатии на кнопку SB1. Для питания микросхемы использовано реактивное сопротивление, которым является конденсатор С1 (он не греется, что лучше по сравнению с гасящим напряжение активным сопротивлением, как это сделано в предыдущей схеме).

Стабилитрон VD1 обеспечивает стабильное напряжение питания микросхемы, а диод VD3 позволяет уменьшить время готовности схемы для частого нажатия на кнопку. Время задержки выключения может регулироваться резистором R3 от 0 до 8,5 мин. Времязадающий конденсатор СЗ обязательно должен иметь маленькую утечку.

Литература: Радиолюбителям: полезные схемы, Книга 5. Шелестов И.П.

Cхема задержки включения реле камеры заднего хода

 В современных мультимедийных автомобильных магнитолах присутствует функция отображение видеосигнала с камеры заднего хода. Включение функции осуществляется включением задней передачи. Это конечно удобно, так как не требует дополнительных выключателей для включения камеры заднего хода, но есть и свои минусы. Так при установке подобной магнитолы на автомобили с АКПП, где включение передних передач осуществляется через прохождение через заднюю передачу, магнитола каждый раз включает камеру заднего хода. Все ничего, но если у вас работала магнитола, все что было включено выключиться и магнитола начнет воспроизводить видеосигнал с камеры заднего хода.

 В данной статье мы рассмотрим принципиальную электрическую схему которая фактически будет включать какое либо устройство, например нашу камеру по истечению определенного времени от 0 до порядка 20 секунд, с момента подачи питания. Подстройка времени производится переменным резистором R1

Схема задержки включения реле камеры заднего вида на транзисторе (аналоговая схема) 

Схема не отличается особой стабильностью по периодам включения один относительно другого, но этот недостаток компенсируется ее простотой и минимальным количеством радиодеталей. «Это идеальный случай, кто только начинает свое знакомство с электроникой. 

Рассмотрим принцип работы схемы. В момент подачи напряжения на эмиттер транзистора и на плюс конденсатора, начинает протекать ток через резистор R1. Начинает заряжаться конденсатор. До тех пор пока он не зарядился, напряжения и тока не хватит для открытия транзистора. При зарядке конденсатора постепенно увеличивается напряжение на базе и транзистор открывается. Ток протекающий между эмиттером и коллектором включает реле.
 На схеме реле  подключено сразу к управляющему сигналу (вывод 30 реле подключен к +). Если управляющий сигнал имеет значительный ток, то реле лучше подключить напрямую к аккумулятору (к силовой проводке), что исключит воздействие на электросхему при включении реле. Если управляющий сигнал имеет отрицательный потенциал, то соответсвенно вывод 30 реле подключаем к заземлению.

Схема задержки включения на микросхеме (цифровая логика)

 Повторившись относительно первого варианта, необходимо сказать о том, что это достаточно просто, но не столь надежно как хотелось бы. Так вот, для того чтобы добиться большей стабильности по срабатыванию, можно применить микросхему таймер NE 555. Эта микросхема по истине легендарна, так как выпускается уже более 35 лет (с 1971 года) и имеет множество аналогов. Ведь популярные производители не смогли отказаться от соблазна, дабы не ухватить свой кусочек прибыли от этого радиоэлемента, путем выпуска подобного на рынок электроники. Микросхема имеет большое количество аналогов. Вот часть из них.

Схема задержки включения реле камеры заднего вида

Ну а наша промышленность, мы имеем ввиду СССР и Россию, выпускала КР1006ВИ1

А вот и схема таймера на КР1006ВИ1, который может включать и отключать нагрузку в определенных интервалах. В нашем случае это от 4,5 секунды. При этом на выходе мы имеем логический ноль или единицу, а это значит у нас не будет проблем с «непонятным» срабатыванием реле. Само собой управляющее реле ставится на выход, то есть в место подключения «нагрузки».

Схема задержки включения реле камеры заднего вида

Итак, при кратковременном срабатывании S1, нагрузка включится только через 4,5 секунды. Этого вполне достаточно, чтобы переключить ручку АКПП. 

Схема задержки включения реле камеры заднего видаПредупреждения о безопасности при установке и подключении схемы задержки реле камеры заднего хода в автомобиле!!! Все работы по установке проводить со скинутой минусовой клеммой аккумулятора. После установки схемы задержки реле, необходимо внимательно проверить все соединения и правильность их подключения.

Отправить ответ

avatar
  Подписаться  
Уведомление о