Драйвер своими руками для дхо: 403 — Доступ запрещён – 403 — Доступ запрещён

Содержание

Стабилизатор для светодиодов и ДХО

Почти все автомобилисты знакомы с такой проблемой, как быстрый выход из строя светодиодных ламп. Которые зачастую ставятся в габаритные огни, дневные ходовые огни (ДХО) или в другие фонари.
Как правило эти светодиодные лампы имеют малую мощность и ток потребления. Чем собственно говоря и обусловлен их выбор.
Сам по себе светодиод запросто служит в оптимальных условиях более 50000 часов, но в автомобиле, особенно в отечественном, его не хватает порой и на месяц. Сначала светодиод начинает мерцать, а затем и вообще перегорает.
Стабилизатор для светодиодов и ДХО

Чем это объясняется?


Производитель ламп пишет маркировку «12V». Это оптимальное напряжение, при котором светодиоды в лампе работают почти на максимуме. И если подать на эту лампу 12 В, то она прослужит на максимальной яркости очень долгое время.
Так почему же она перегорает в автомобиле? Изначально напряжение бортовой сети автомобиля – 12,6 В. Уже видно завышение от 12. А напряжение сети заведенного автомобиля может доходить до 14,5 В. Добавим ко всему этому различные скачки от переключения мощных ламп дальнего или ближнего света, мощные импульсы по напряжению и магнитные наводки при пуске двигателя от стартера. И получим не самую лучшую сеть для питания светодиодов, которые в отличии от ламп накаливания, очень чувствительны ко всем перепадам.
Так как зачастую в простеньких китайских лампах нет никаких ограничивающих элементов, кроме резистора – лампа выходит из строя от перенапряжения.
За свою практику я менял десятки таких ламп. Большая часть из них не служила и года. В конечном итоге я устал и решил поискать выход попроще.

Простой стабилизатор напряжения для светодиодов


Чтобы обеспечить комфортную эксплуатацию для светодиодов я решил сделать простой стабилизатор. Абсолютно не сложный, его сможет повторить любой автомобилист.
Все что нам понадобиться:

Вроде все. Вся комплектация стоит копейки на Али экспресс – ссылки в списке.

Схема стабилизатора


Стабилизатор для светодиодов и ДХО
Схема взята из даташита на микросхему L7805.
Стабилизатор для светодиодов и ДХО
Все просто – слева вход, справа – выход. Такой стабилизатор может выдержать до 1,5 А нагрузки, при условии что будет установлен на радиатор. Естественно для маленьких лампочек никакого радиатора не нужно.

Сборка стабилизатора для светодиодов


Все что нужно это вырезать из текстолита нужный кусочек. Травить дорожки не нужно – я вырезал простые лини обычной отверткой.
Припаиваем все элементы и все готово. В настройке не нуждается.
Стабилизатор для светодиодов и ДХО

Стабилизатор для светодиодов и ДХО
В роли корпуса служит термообдувка.
Плюс схемы ещё в том, что в роли радиатора модно использовать кузов автомобиля, так как центральный вывод корпуса микросхемы соединен с минусом.
Стабилизатор для светодиодов и ДХО
На этом все, светодиоды больше не выгорают. Езжу больше года и о данной проблеме забыл, чего советую и вам.

Смотрите видео сборки


Доработка автомобильных дневных ходовых огней

РадиоКот >Чердак >

Доработка автомобильных дневных ходовых огней

     Многие автолюбители, после приобретения и установки на свой автомобиль дневных ходовых огней (ДХО) неожиданно для себя обнаруживают, что до этого исправно работающий радиоприёмник автомагнитолы при включении ДХО начинает выдавать один шум. Причём речь идет не о средних и длинных волнах, а о УКВ и FM диапазонах, где помехозащищённость намного выше. Такой сильный уровень радиопомех получается не от всех ДХО. Всё зависит от схемотехники встроенного импульсного преобразователя (если он вообще присутствует).
     Вот и автору данной статьи не повезло с подобным приобретением. Речь идет о ДХО DRL101. По своим характеристикам фары вроде бы неплохие – в каждой по 5 одноваттных светодиодов 5000К с суммарной силой света 400 кд, возможность плавной регулировки яркости, водонепроницаемый корпус. При ясной солнечной погоде включенные DRL101 отлично видны с расстояния в несколько сотен метров. Единственный выявленный недостаток – это очень сильный уровень радиопомех. Для выяснения их причины DRL101 были вскрыты. Вот фото платы с обеих сторон:

     Схема оказалась предельно простой, выполненной на двух светодиодных драйверах PT4115. Один из драйверов нагружен на три последовательно включенных светодиода, второй на два. Кстати, именно поэтому при плавном повышении напряжения питания сначала загораются два светодиода, а затем остальные три. Типовая схема включения PT4115 приведена ниже:

     В фаре DRL101 схема включения несколько иная: диодный мост на входе заменён одним диодом SS14, токозадающий резистор Rs составлен из трёх параллельно соединённых резисторов по 1 Ом, индуктивность дросселя L составляет 100 мкГн, и на вход DIM (ШИМ управление яркостью) внешний сигнал управления подаётся через транзисторный инвертор.

     Рабочая частота PT4115 составляет около 1 МГц. Вполне естественно, что единственный в схеме электролитический конденсатор на 100 мкФ 35В подавить радиопомехи на такой частоте не в состоянии. Эти самые радиопомехи свободно распространяются по подводящим питающим проводам, щедро излучая во все стороны. Также на плате имеются довольно длинные печатные дорожки к светодиодам, работающие как передающие антенны. В общем Китай он и есть есть Китай. Удешевили схему как только могли.
     Для уменьшения уровня радиопомех фары были переделаны следующим образом:

     1) Параллельно электролитам 100 мкФ запаяны чип-конденсаторы 1206 на 0,68 мкФ 50В. Можно использовать даже в корпусе 1210 для лучшего поглощения радиопомех.
     2) Непосредственно между верхним по схеме выводом катушки и выводом 4 (CSN) микросхемы PT4115 запаян такой же конденсатор 0,68 мкФ для шунтирования длинных печатных проводников платы по высокой частоте.

     3) На каждую фару добавлено по дополнительному входному фильтру для отсекания радиопомех по цепи питания:

     

     Каждый фильтр собран на печатной платке из одностороннего фольгированного стеклотекстолита размерами 11х12 мм:

     Плату даже не обязательно вытравливать – достаточно прорезать две полоски крест-накрест и механически удалить фольгу.
     Все элементы применены в ЧИП-исполнении. Керамические конденсаторы – в корпусе 1206, танталовые – в корпусе B, дроссели – типа DLJ4018.
     Собранная плата фильтра подключается в разрыв питающих проводов и свободно помещается внутри корпуса фары.
     Дополнительно, снаружи каждой фары, на входные провода надет общий ферритовый помехоподавляющий сердечник.

     Перед окончательной сборкой доработанных таким образом фар желательно промазать стыки корпуса силиконовым герметиком для обеспечения влагостойкости.

     Испытания доработанных ДХО производились за 35-40 км от города. Производилось периодическое включение/выключение ДХО и прослушивание станций УКВ и FM диапазонов. Никаких помех радиоприёму не наблюдалось даже на слабых станциях.

    Таким образом, подобную доработку можно рекомендовать владельцам не только описанной модели ДХО, но и других подобных, создающих значительные радиопомехи. Как правило, схемы у таких фар подобные.

Файлы:
Файлы

Все вопросы в Форум.


Как вам эта статья?

Заработало ли это устройство у вас?

Схема драйвера светодиодов 220В

Преимущества светодиодных лап рассматривались неоднократно. Обилие положительных отзывов пользователей светодиодного освещения волей-неволей заставляет задуматься о собственных лампочках Ильича. Все было бы неплохо, но когда дело доходит до калькуляции переоснащения квартиры на светодиодное освещения, цифры немного «напрягают».

Для замены обыкновенной лампы на 75Вт идёт светодиодная лампочка на 15Вт, а таких ламп надо поменять десяток. При средней стоимости около 10 долларов за лампу бюджет выходит приличный, да и еще нельзя исключить риск приобретения китайского «клона» с жизненным циклом 2-3 года. В свете этого многие рассматривают возможность самостоятельного изготовления этих девайсов.

Теория питания светодиодных ламп от 220В

Самый бюджетный вариант можно собирать своими руками из вот таких светодиодов. Десяток таких малюток стоит меньше доллара, а по яркости соответствует лампе накаливания на 75Вт. Собрать всё воедино не проблема, вот только напрямую в сеть их не подключишь – сгорят. Сердцем любой светодиодной лампы является драйвер питания. От него зависит, насколько долго и хорошо будет светить лампочка.

Что бы собрать светодиодную лампу своими руками на 220 вольт, разберёмся в схеме драйвера питания.

Параметры сети значительно превышают потребности светодиода. Что бы светодиод смог работать от сети требуется уменьшить амплитуду напряжения, силу тока и преобразовать переменное напряжение сети в постоянное.

Для этих целей используют делитель напряжения с резисторной либо ёмкостной нагрузкой и стабилизаторы.

Компоненты диодного светильника

Схема светодиодной лампы на 220 вольт потребует минимальное количество доступных компонентов.

  • Светодиоды 3,3В 1Вт – 12 шт.;
  • керамический конденсатор 0,27мкФ 400-500В – 1 шт.;
  • резистор 500кОм — 1Мом 0,5 — 1Вт – 1 ш.т;
  • диод на 100В – 4 шт.;
  • электролитические конденсаторы на 330мкФ и 100мкФ 16В по 1 шт.;
  • стабилизатор напряжения на 12В L7812 или аналогичный – 1шт.

Изготовление драйвера светодиодов на 220В своими руками

Схема лед драйвера на 220 вольт представляет собой не что иное, как импульсный блок питания.

Схема импульсного блока питания

В качестве самодельного светодиодного драйвера от сети 220В рассмотрим простейший импульсный блок питания без гальванической развязки. Основное преимущество таких схем – простота и надёжность. Но будьте осторожны при сборке, поскольку у такой схемы нет ограничения по отдаваемому току. Светодиоды будут отбирать свои положенные полтора ампера, но если вы коснётесь оголённых проводов рукой, ток достигнет десятка ампер, а такой удар тока очень ощутимый.

Схема простейшего драйвера для светодиодов на 220В состоит их трёх основных каскадов:

  • Делитель напряжения на ёмкостном сопротивлении;
  • диодный мост;
  • каскад стабилизации напряжения.

Первый каскад – ёмкостное сопротивление на конденсаторе С1 с резистором. Резистор необходим для саморазрядки конденсатора и на работу самой схемы не влияет. Его номинал не особо критичен и может быть от 100кОм до 1Мом с мощностью 0,5-1 Вт. Конденсатор обязательно не электролитический на 400-500В (эффективное амплитудное напряжение сети).

При прохождении полуволны напряжения через конденсатор, он пропускает ток, пока не произойдет заряд обкладок. Чем меньше его ёмкость, тем быстрее происходит полная зарядка. При ёмкости 0,3-0,4мкФ время зарядки составляет 1/10 периода полуволны сетевого напряжения. Говоря простым языком, через конденсатор пройдет лишь десятая часть поступающего напряжения.

Второй каскад – диодный мост. Он преобразует переменное напряжение в постоянное. После отсечения большей части полуволны напряжения конденсатором, на выходе диодного моста получаем около 20-24В постоянного тока.

Третий каскад – сглаживающий стабилизирующий фильтр.

Конденсатор с диодным мостом выполняют функцию делителя напряжения. При изменении вольтажа в сети, на выходе диодного моста амплитуда так же будет меняться.


Что бы сгладить пульсацию напряжения параллельно цепи подключаем электролитический конденсатор. Его ёмкость зависит от мощности нашей нагрузки.

В схеме драйвера питающее напряжение для светодиодов не должно превышать 12В. В качестве стабилизатора можно использовать распространённый элемент L7812.

Собранная схема светодиодной лампы на 220 вольт начинает работать сразу, но перед включением в сеть тщательно изолируйте все оголённые провода и места пайки элементов схемы.

Вариант драйвера без стабилизатора тока

В сети существует огромное количество схем драйверов для светодиодов от сети 220В, которые не имеют стабилизаторов тока.

Схема светодиодного драйвера без стабилизатора

Проблема любого безтрансформаторного драйвера – пульсация выходного напряжения, следовательно, и яркости светодиодов. Конденсатор, установленный после диодного моста, частично справляется с этой проблемой, но решает её не полностью.

На диодах будет присутствовать пульсация с амплитудой 2-3В. Когда мы устанавливаем в схему стабилизатор на 12В, даже с учётом пульсации амплитуда входящего напряжения будет выше диапазона отсечения.

Диаграмма напряжения в схеме без стабилизатора

Диаграмма без стабилизатора

Диаграмма в схеме со стабилизатором

Диаграмма при подключении через стабилизатор тока

Поэтому драйвер для диодных ламп, даже собранный своими руками, по уровню пульсации не будет уступать аналогичным узлам дорогих ламп фабричного производства.

Как видите, собрать драйвер своими руками не представляет особой сложности. Изменяя параметры элементов схемы, мы можем в широких пределах варьировать значения выходного сигнала.

Если у вас возникнет желание на основе такой схемы собрать схему светодиодного прожектора на 220 вольт, лучше переделать выходной каскад под напряжение 24В с соответствующим стабилизатором, поскольку выходной ток у L7812 1,2А, это ограничивает мощность нагрузки в 10Вт. Для более мощных источников освещения требуется либо увеличить количество выходных каскадов, либо использовать более мощный стабилизатор с выходным током до 5А и устанавливать его на радиатор.

Понравилась статья? Расскажите о ней! Вы нам очень поможете:)

назначение, принцип работы, схема и ремонт

Сейчас уже можно разделить светодиоды на два основных подтипа: индикаторные и осветительные. Осветительные светодиоды – относительно новые элементы светотехники. Первые модели применялись как индикаторы еще лет 30 назад. Но прогресс на месте не стоит. Инженерам удалось получить большую яркость при минимальном размере и потребляемом токе в сравнение с лампами. Кроме того, светодиоды имеют намного большую механическую прочность. Как лампочку их уже не разобьешь.

Светодиодная осветительная продукция серьезно потеснила практически все другие источники света. Светодиоды могут обеспечить освещение не хуже лампового. А их энергоэффективность намного выше. Обычно источники света на основе светодиодов окупаются в течение года. Сейчас их можно встретить в качестве домашнего освещения, уличных фонарей. Они устанавливаются в световое оборудование автомобилей. Даже в мониторах и телевизорах они заменили лампы подсветки.

Назначение.

Светодиод весьма чувствителен к качеству электропитания. Если пониженное напряжение ему не сделает ничего плохого, то повышенные напряжения и токи очень быстро снижают ресурс этих перспективных источников света. Многие видели, наверное, как на автомобилях хаотично моргают огни. Этот светодиод уже отслужил.

Для обеспечения стабильного электропитания (поддержания заданного напряжения и тока) необходима дополнительная электронная схема – блок питания или драйвер питания. Часто его называют led driver.

Принцип работы.

Электронная схема должна обеспечить строго стабилизированные напряжение и ток, подводимые к кристаллу. Небольшое превышение в цепи питания существенно снижает ресурс светоизлучателя.

В простейшем и самом дешевом случае просто ставят ограничительный резистор.

Питание диода через ограничивающий резистор.

Это простейшая линейная схема. Она не способна автоматически поддерживать ток. С ростом напряжения, он будет расти, при превышение допустимого значения произойдет разрушение кристалла от перегрева. В более сложном случае управление реализуется через транзистор. Недостаток линейной схемы – бесполезное рассеивание мощности. С ростом напряжения будут расти и потери. Если для маломощных LED-источников света такой подход еще допустим, то при использовании мощных светоизлучающих диодов такие схемы не используются. Из плюсов только простота реализации, низкая себестоимость, достаточная надежность схемы.

Можно применить импульсную стабилизацию. В простейшем случае схема будет выглядеть так:

Пример.Импульсная стабилизация (упрощенно)

При нажатии на кнопку происходит заряд конденсатора, при отпускании, он отдает накопленную энергию полупроводнику, а тот излучает свет.  При росте напряжения время на зарядку сокращается, при падении – увеличивается. Вот так на кнопку и надо нажимать, поддерживая свечение. Естественно, сейчас это все делает электроника. В источниках питания роль кнопки выполняет транзистор, либо тиристор. Это – принцип ШИМ – широтно-импульсная модуляция. Замыкание происходит десятки, а то и тысячи раз в секунду. КПД ШИМ может достигать 95%.

Категорически не стоит путать светодиодный драйвер и ПРА для люминесцентных ламп, у них разные принципы работы.

Характеристики драйверов, их отличия от блоков питания LED ленты.

Если сравнивать драйвер и блок питания, то у них есть различия в работе. Драйвер – это источник тока. Его задача поддерживать именно определенную силу тока через кристалл или светодиодную линейку.

Задача стабилизированного блока питания в выдаче именно стабильного напряжения. Хотя блок питания – понятие обобщенное.

Источник напряжения применяется в основном со светодиодной лентой, где диоды включены в параллель. Соответственно через них должен проходить равный ток, при неизменном напряжении. При использовании одного светодиода важно обеспечить определенную силу тока через него. Отличия есть, но оба выполняют одну и туже задачу – обеспечение стабильного питания.

Для подключения светодиодной ленты необходимы, как правило, блоки питания, выдающие 12, либо 24 В. Второй параметр – это мощность. Блок питания должен выдавать мощность не равную, а несколько большую, чем мощность подключаемой светодиодной линейки. В противном случае, яркость свечения будет недостаточна. Обычно запас по мощности рекомендуется в пределах 20-30 процентов от суммарной мощности.

При выборе драйвера нужно учесть:

  • Мощность,
  • Напряжение,
  • Предельный ток.

Кроме того, существуют и регулируемые источники питания. Их задача – регулировка яркости освещения. Но различаются принципы – регулировка напряжения, либо силы тока.

Для подключения led-линейки потребуется большая сила тока при неизменном напряжении.

Суммарная мощность будет рассчитываться по формуле P = P(led) × n, где Р – мощность, Р(led) – мощность единичного диода в линейке, n – их количество.

Сила тока через линейку будет рассчитываться по аналогичной формуле.

Если есть желание самостоятельно изготовить источник питания для светодиодов, то самый простой вариант – импульсный без гальванической развязки.

Схема простого led-драйвера без гальванической развязки.

Схема проста и надежна. Делитель основан на емкостном сопротивлении. Выпрямление производится при помощи диодного моста. Электролитический конденсатор (перед L7812) сглаживает пульсации после выпрямления. Конденсатор после L7812 сглаживает пульсации на светодиодах. На работу схемы он не влияет. L7812 – собственно сам стабилизатор. Это импортный аналог советских микросхем серии КРЕНхх. Та же самая схема включения. Характеристики несколько улучшены. Однако предельный ток составляет не более 1.2А. Это не позволит создать мощный светильник. Существуют неплохие варианты готовых источников питания.

Как выбрать драйвер для светодиодов.

От выбора драйвера зависит срок службы светодиодов. При этом светодиод достигает своих номинальных характеристик, так как получает необходимую ему мощность.

В зависимости от степени защиты драйвер можно применять либо дома, либо на улице. Внешне драйвер может быть открытым, в корпусе из перфорированного металла, либо – закрытый, размешенный в герметичной металлической коробке. Для дома достаточно негерметизированного пластикового корпуса, в котором расположен электронный блок.

Сразу стоит учесть, что ограничивающий резистор – это не самый лучший вариант. Он не избавит ни от скачков питающей сети, ни от импульсных помех. Любое изменение напряжения приведет в скачку тока. Линейные стабилизаторы также не являются достойным средством запитки светоизлучающих диодов. Его способности ограничиваются низкой эффективностью.

Выбор драйвера производится только после того, как известна суммарная мощность, схема подключения и количество светодиодов.

Сейчас много подделок и одни и те же по типоразмерам диоды могут обеспечивать разные мощности. Лучше использовать только известные марки электротехнической продукции.

На корпусе драйвера для подключения светодиодов, всегда размещена спецификация. Она включает:

  • класс защищенности от пыли и жидкости,
  • мощность,
  • номинальный стабилизированный ток,
  • рабочее входное напряжение,
  • диапазон выходного напряжения.

Достаточно популярны бескорпусные led-драйверы. Плату потребуется разместить в корпусе. Это необходимо для безопасного использования. Платы больше подходят для радиолюбителей-энтузиастов. У них входное напряжение может быть либо 12 В, либо 220 В.  

Также стоит продумать о размещении драйвера. Температура и влажность влияют на надежность системы освещения.

Не стоит пытаться выжать из источника тока максимум. Это приводит к работе на предельных режимах, соответственно возникает повышенный нагрев. Превышение может вывести стабилизатор из строя.

Виды драйверов.

По типу их можно подразделить на:

Линейные. Они наиболее подходящие, если входное напряжение не стабильно. Отличаются улучшенной стабилизацией. Распространены мало по причине низкого КПД. Выделяет большее количество тепла, подходит для маломощной нагрузки.

Внутреннее устройство драйвера

Внешний вид и схема драйвера LED 1338G7.

Импульсные. Основаны на микросхемах ШИМ. Обладают высоким КПД. Отличаются малым нагревом и длительным сроком службы.

ШИМ-драйвер Recom.

Микросхемы ШИМ создают значительный уровень электромагнитных помех. Людям с кардиостимуляторами не рекомендовано находится в помещениях, где применяются такие драйвера для питания светодиодов.

Драйвер, работающий с диммером. Принцип основан на использовании ШИМ-контроллера. Принцип состоит в том, что регулируется сила тока на светодиодах. Низкокачественные изделия дают эффект мерцания.

Драйвер с диммером.

LED драйвер на 220 В.

Существует немало уже готовых светодиодных драйверов промышленного производства. Естественно, они обладаю различными характеристиками. Их особенность в том, что они питаются от сети 220 В переменного напряжения и могут работать в широком диапазоне питающего напряжения. Задача, у них все та же. Выдать определенную силу тока. Многие промышленные изделия уже имеют гальваническую развязку. Гальваническая развязка предназначена для передачи электроэнергии без непосредственного соединения входной и выходной частей схемы. Это дополнительные очки в плане электробезопасности (простейшей и исторически первой гальванической развязкой считается обычный трансформатор). Обычно они имеют нестабильность не более 3 %. В подавляющем большинстве сохраняют работоспособность от 90-100 Вольт и до 260 Вольт. В магазинах очень часто их могут называть:

  • блок питания (БП),
  • источник тока,
  • адаптер питания,
  • источник питания.

Это все одно и тоже устройство. Продавцы не обязаны обладать техническим образованием.

Рекомендуемые производители светодиодных драйверов.

Многие светодиодные энергосберегающие лампы уже имеют встроенный драйвер. Тем не менее лучше не приобретать безымянную продукцию родом из Китая. Хотя временами и попадаются достойные внимания экземпляры, что в прочем явление редкое. Существует огромное количество поддельных осветителей. Многие модели не имеют гальванической развязки. Это представляет опасность для светодиодов. Такие источники тока при выходе из строя могут дать импульс и сжечь led-ленту.

Но тем не менее рынок в основном занят именно китайской продукцией. Российские поставщики известны не широко. Из них можно ответить продукцию фирм Аргос, Тритон ЛЕД, Arlight, Ирбис, Рубикон. Большинство моделей может работать и в экстремальных условиях.

Из иностранных можно смело выбрать источники тока от Helvar, Mean Well, DEUS, Moons, EVADA Electronics.

Led-драйвер Helvar.

Led-драйвер Mean Well.

Led-драйвер DEUS.

Led-драйвер «Ирбис».

Led-драйвер MOSO.

Из китайских можно доверять MOSO. Возможно появление новых брендов, которые производят конкурентоспособные устройства.

Хорошие рекомендации имеют Texas Instruments (США) и Rubicon (Япония, не путать с «Рубикон» Россия. Это разные марки). Но пока они дороги. 

Схема подключения драйвера к светодиодам.

Перед подключением светодиодов к драйверу необходимо уметь определять его полярность, иными словами, распознавать, где анод (+), где катод (-). Без этого света не будет.

Индикаторные диоды, а также некоторые маломощные осветительные, имеют два вывода.

Выводы светодиода.

Светодиоды в исполнении SMD (поверхностный монтаж) имеют либо 2, либо 4 вывода. В любом случае это анод и катод.

Выводы светодиодов в SMD-исполнении.

В первом случае выводы 3 и 4 могут быть не задействованы. Во втором случае косой срез расположен ближе к катоду. Обратите внимание, единого стандарта нет и возможны различия в полярности.

Поэтому можно либо обратиться к datasheet, либо использовать низковольтный источник постоянного тока и резистор ограничитель. В случае неправильной полярности светодиод не может загореться.

При использовании источника тока схема драйвера для светодиодов будет следующая:

Схема подключения светодиода.

Если у нас источник напряжения, то подключение осуществляется через ограничивающий резистор.

Схема подключения светодиода к источнику
напряжения через ограничитель.

Классическая светодиодная лента построена по такой схеме:

Схема светодиодной линейки.

В этом случае расчет производится по формулам:

Формула связи тока, напряжения, сопротивления.

При подключении важно учитывать:

  • При малой силе тока, мы теряем в яркости, при большой в сроке службы.
  • Напряжение из datasheet указывает падение напряжения при прохождении номинального тока. Этот параметром не основной.
  • Мощным светодиодам требуется и качественное питание, и хорошее охлаждение.

Схемы (микросхемы) светодиодных драйверов.

Как правило драйвера светодиодов строятся на интегральных стабилизаторах (КРЕНхх, либо импортные аналоги) или ШИМ. Схемы достаточно просты.

Использовании микросхем для стабилизации.

Принципиальные схемы светодиодных драйверов.

Существует схема самодельного источника тока на советской микросхеме К142ЕН12А.  Резистор R2 позволяет менять яркость свечения.

Принципиальная схема на отечественных компонентах.

Линейный светодиодный драйвер своими руками.

Эта часть статьи посвящена радиолюбителям.

Оригинальный линейный источник тока на компараторе.

Это весьма интересная схема. В качестве ключевого элемента выступает униполярный (полевой) транзистор. Степенью его открытия управляет микросхема – квадрантный компаратор напряжения. Возможно, эта схема покажется сложной, но тем не менее ее можно смело отнести к линейным источникам тока, так как управление током осуществляется через соединение «исток-сток». Степень открытия зависит от приложенного к затвору напряжения. Регулировка достигается за счет связи одного из входов компаратора и напряжения со стока. VD1 выполняет функцию защиты.

Срок службы светодиодных драйверов.

Как такового определенного срока службы нет, но многие производители готовы дать гарантию сроком в пять лет на свою продукцию. Естественно, при согласовании мощностей. Для того, чтобы источник питания прослужил дольше не следует давать нагрузку, при которой он будет отдавать предельные токи. Если он собран из качественных комплектующих, то он будет стабильно работать достаточно долгое время. Но рабочие температуры могут быть близки к критическим (зависит от схемотехнических решений). Оптимально, если мощность потребителей будет меньше на 20-30 процентов.

Если говорим о самодельном изготовлении, то многое зависит от качества сборки, качества радиодеталей. Интегральные стабилизаторы желательно закреплять на радиатор для обеспечения теплового режима, не следует забывать о про теплопроводящую пасту между корпусом стабилизатора и теплоотводом.

Простой драйвер для мощного светодиода

Наверное, каждый, даже начинающий радиолюбитель знает, что для того чтобы подключить обычный светодиод к источнику питания нужен всего один резистор. А как быть если светодиод мощный? Ватт так на 10. Как быть тогда?
Я вам покажу способ сделать простой драйвер для мощного светодиода всего из двух компонентов.
Простой драйвер для мощного светодиода
Для стабилизатора-драйвера нам понадобиться:
1. Резистор – aliexpress.
2. Микросхема – LM317 – aliexpress.
Простой драйвер для мощного светодиода
LM317 – это микросхема стабилизатор. Отлично подходит для конструирования регулируемых источников питания или драйверов для питания светодиодов, как в нашем случае.
Простой драйвер для мощного светодиода

Достоинства LM317


  • Диапазон стабилизации напряжения от 1,7 (включая напряжение светодиода – 3 В) до 37 В. Отличная характеристика, для автомобилистов: яркость не будет плавать на любых оборотах;
  • Выходной ток до 1,5 можно подключать несколько мощных светодиодов;
    Стабилизатор имеет встроенную систему защиты от перегрева и короткого замыкания.
  • Минусовое питание светодиода в схеме включения берется от источника питания, поэтому при креплении к корпусу автомобиля уменьшается количество монтажных проводов, а корпус может играет роль большого теплоотвода для светодиода.

Схема драйвера для мощного светодиода


Простой драйвер для мощного светодиода
Я буду подключать светодиод на 3 Ватта.В итоге нам нужно будет рассчитать сопротивление под наш светодиод. Светодиод мощностью 1 Вт потребляет 350 мА, а 3-х ваттный – 700 мА (можно посмотреть в даташит). Микросхема LM317 – имеет опорное напряжение стабилизатора – 1,25 – это число постоянное. Его нужно поделить на ток и получиться сопротивление резистора. То есть: 1,25 / 0,7 = 1,78 Ом. Ток берем в амперах. Выбираем ближайший резистор по сопротивлению, так как резисторов сопротивлением 1,78 не бывает. Берем 1,8 и собираем схему.

Если мощность вашего светодиода превышает 1 Вт, то микросхему необходимо установить на радиатор. Вообще LM317 рассчитана на ток до 1,5.
Питать нашу схему можно напряжение от 3 до 37 вольт. Согласитесь, солидный диапазон питания получается. Но чем больше напряжение, тем больше греется микросхема, учтите это.

Простой драйвер для мощного светодиода
Простой драйвер для мощного светодиода
Простой драйвер для мощного светодиода
Простой драйвер для мощного светодиода
В цепь можно включить не один мощный светодиод, а, скажем, два или три. То есть этой схемой можно запитать до 10 мощных светодиодов.

На али экспресс можно купить готовый стабилизатор, с переменным резистором под любой ток – LM317 линейный регулятор.

Отправить ответ

avatar
  Подписаться  
Уведомление о