Импульсный блок питания регулируемый своими руками: 403 — Доступ запрещён – КАК СДЕЛАТЬ РЕГУЛИРУЕМЫЙ ИМПУЛЬСНЫЙ БП

Содержание

ИМПУЛЬСНЫЙ РЕГУЛИРУЕМЫЙ ЛАБОРАТОРНЫЙ БЛОК ПИТАНИЯ

   В различных ситуациях требуются разные по напряжению и мощности ИП. Поэтому многие покупают или делают такой, чтоб хватило на все случаи. И проще всего взять за основу компьютерный. Данный лабораторный БП 0-22 В 20 А переделан с небольшой доработкой из АТХ на ШИМ 2003. Для переделки использовал JNC mod. LC-B250ATX. Идея не нова и в интернете множество подобных решений, некоторые были изучены, но окончательное получилось свое. Результатом очень доволен. Сейчас ожидаю посылку из Китая с совмещенными индикаторами напряжения и тока, и, соответственно, заменю. Тогда можно будет назвать мою разработку ЛБП — зарядное для автомобильных АКБ.

Схема регулируемого лабораторного БП из ATX

   Первым делом выпаял все провода выходных напряжений +12, -12, +5, -5 и 3,3 В. Выпаял все, кроме +12 В диоды, конденсаторы, нагрузочные резисторы.

ИМПУЛЬСНЫЙ РЕГУЛИРУЕМЫЙ ЛАБОРАТОРНЫЙ БЛОК ПИТАНИЯ из ПК

   Заменил входные высоковольтные электролиты 220 х 200 на 470 х 200. Если есть, то лучше ставить бОльшую емкость. Иногда производитель экономит на входном фильтре по питанию — соответственно рекомендую допаять, если отсутствует.

ИМПУЛЬСНЫЙ КОМПЬЮТЕРНЫЙ БЛОК ПИТАНИЯ

   Выходной дроссель +12 В перемотал. Новый — 50 витков проводом диаметром 1 мм, удалив старые намотки. Конденсатор заменил на 4700 мкф х 35 В.

ИМПУЛЬСНЫЙ РЕГУЛИРУЕМЫЙ БЛОК ПИТАНИЯ из АТХ

   Так как в блоке имеется дежурное питание с напряжениями 5 и 17 вольт, то использовал их для питания 2003-й и по узлу проверки напряжений.

ИМПУЛЬСНЫЙ РЕГУЛИРУЕМЫЙ ЛАБОРАТОРНЫЙ БЛОК ПИТАНИЯ на 2003

   На вывод 4 подал прямое напряжение +5 вольт с «дежурки» (т.е. соединил его с выводом 1). С помощью резисторного 1,5 и 3 кОм делителя напряжения от 5 вольт дежурного питания сделал 3,2 и подал его на вход 3 и на правый вывод резистора R56, который потом выходит на вывод 11 микросхемы.

Делаем ИМПУЛЬСНЫЙ ЛАБОРАТОРНЫЙ БЛОК ПИТАНИЯ

   Установив микросхему 7812 на выход 17 вольт с дежурки (конденсатор С15) получил 12 вольт и подключил к резистору 1 Ком (без номера на схеме), который левым концом подключается к выводу 6 микросхемы. Также через резистор 33 Ом запитал вентилятор охлаждения, который просто перевернул, чтоб он дул внутрь. Резистор нужен для того, чтоб снизить обороты и шумность вентилятора.

ИМПУЛЬСНЫЙ РЕГУЛИРУЕМЫЙ ЛАБОРАТОРНЫЙ БЛОК ПИТАНИЯ 0-22

   Всю цепочку резисторов и диодов отрицательных напряжений (R63, 64, 35, 411, 42, 43, C20, D11, 24, 27) выпаял из платы, вывод 5 микросхемы закоротил на землю.

ИМПУЛЬСНЫЙ ЛАБОРАТОРНЫЙ БЛОК ПИТАНИЯ и МАГНИТОЛА

   Добавил регулировку напряжения и индикатор выходного напряжения из китайского интернет магазина. Только необходимо запитать последний от дежурки +5 В, а не от измеряемого напряжения (он начинает работать от +3 В).

Испытания блока питания

   Испытания проводились одновременным подключением нескольких автомобильных ламп (55+60+60) Вт. Это примерно 15 Ампер при 14 В. Проработал минут 15 без проблем. В некоторых источниках рекомендуют изолировать общий провод выхода 12 В от корпуса, но тогда появляется свист. Используя в качестве источника питания автомобильной магнитолы не заметил никаких помех ни на радио, ни в других режимах, а 4*40 Вт тянет отлично. С уважением, Петровский Андрей.

   Форум по АТХ БП

   Обсудить статью ИМПУЛЬСНЫЙ РЕГУЛИРУЕМЫЙ ЛАБОРАТОРНЫЙ БЛОК ПИТАНИЯ


Регулируемый блок питания своими руками

Мастер, описание устройства которого в первой части, задавшись целью сделать блок питания с регулировкой, не стал усложнять себе дело и просто использовал платы, которые лежали без дела. Второй вариант предполагает использование еще более распространенного материала – к обычному блоку была добавлена регулировка, пожалуй, это очень многообещающее по простоте решение при том, что нужные характеристики не будут потеряны и реализовать задумку можно своими руками даже не самому опытному радиолюбителю. В бонус еще два варианта совсем простых схем со всеми подробными объяснениями для начинающих. Итак, на ваш выбор 4 способа.

Блок питания с регулировкой из старой платы компьютера

Stalevik

Расскажем, как сделать регулируемый блок питания из ненужной платы компьютера. Мастер взял плату компьютера и выпилил блок, питающий оперативку.
Так он выглядит.

Определимся, какие детали нужно взять, какие нет, чтобы отрезать то, что нужно, чтобы на плате были все компоненты блока питания. Обычно импульсный блок для подачи тока на компьютер состоит из микросхемы, шим контроллера, ключевых транзисторов, выходного дросселя и выходного конденсатора, входного конденсатора. На плате еще и зачем-то присутствует входной дроссель. Его тоже оставил. Ключевые транзисторы – может быть два, три. Есть посадочное место по 3 транзистор, но в схеме не используется.

Сама микросхема шим контроллера может выглядеть так. Вот она под лупой.

Может выглядеть как квадратик с маленькими выводами со всех сторон. Это типичный шим контроллер на плате ноутбука.


Так выглядит блок питания импульсный на видеокарте.

Точно также выглядит блок питания для процессора. Видим шим контроллер и несколько каналов питания процессора. 3 транзистора в данном случае. Дроссель и конденсатор. Это один канал.
Три транзистора, дроссель, конденсатор – второй канал. 3 канал. И еще два канала для других целей.
Вы знаете как выглядит шим-контроллер, смотрите под лупой его маркировку, ищите в интернете datasheet, скачиваете pdf файл и смотрите схему, чтобы ничего не напутать.

На схеме видим шим-контроллер, но по краям обозначены, пронумерованы выводы.

Обозначаются транзисторы. Это дроссель. Это конденсатор выходной и конденсатор входной. Входное напряжение в диапазоне от 1,5 до 19 вольт, но напряжение питание шим-контроллера должно быть от 5 вольт до 12 вольт. То есть может получиться, что потребуется отдельный источник питания для питания шим-контроллера. Вся обвязка, резисторы и конденсаторы, не пугайтесь. Это не нужно знать. Всё есть на плате, вы не собираете шим-контроллер, а используете готовый. Нужно знать только 2 резистора – они задают выходное напряжение.

Резисторный делитель. Вся его суть в том, чтобы сигнал с выхода уменьшить примерно до 1 вольта и подать на вход шим-контроллера фидбэк – обратная связь. Если вкратце, то изменяя номинал резисторов, можем регулировать выходное напряжение. В показанном случае вместо резистора фидбэк мастер поставил подстроечный резистор на 10 килоом. Этого оказалось достаточным, чтобы регулировать выходное напряжение от 1 вольта до примерно 12 вольт. К сожалению, не на всех шим-контроллерах это возможно. Например, на шим контроллерах процессоров и видеокарт, чтобы была возможность настраивать напряжение, возможность разгона, выходное напряжение сдается программно по несколькоканальной шине. Менять выходное напряжение такого шим контроллера можно разве только перемычками.

Итак, зная как выглядит шим-контроллер, элементы, которые нужны, уже можем выпиливать блок питания. Но делать это нужно аккуратно, так как вокруг шим-контроллера есть дорожки, которые могут понадобиться. Например, можно видеть – дорожка идёт от базы транзистора к шим контроллеру. Её сложно было сохранить, пришлось аккуратно выпиливать плату.

Используя тестер в режиме прозвонки и ориентируясь на схему, припаял провода. Также пользуясь тестером, нашел 6 вывод шим-контроллера и от него прозвонил резисторы обратной связи. Резистор находился рфб, его выпаял и вместо него от выхода припаял подстроечный резистор на 10 килоом, чтобы регулировать выходное напряжение, также путем про звонки выяснил, что питание шим-контроллера напрямую связано со входной линией питания. Это значит, что не получиться подавать на вход больше 12 вольт, чтобы не сжечь шим-контроллер.

Посмотрим, как блок питания выглядит в работе

Припаял штекер для входного напряжения, индикатор напряжения и выходные провода. Подключаем внешнее питание 12 вольт. Загорается индикатор. Уже был настроен на напряжение 9,2 вольта. Попробуем регулировать блок питания отверткой.


Пришло время заценить, на что способен блок питания. Взял деревянный брусок и самодельный проволочный резистор из нихромовой проволоки. Его сопротивление низкое и вместе с щупами тестера составляет 1,7 Ом. Включаем мультиметр в режим амперметра, подключаем его последовательно к резистору. Смотрите, что происходит – резистор накаляется до красна, напряжение на выходе практически не меняется, а ток составляет около 4 ампер.


Раньше мастер уже делал похожие блоки питания. Один вырезан своими руками из платы ноутбука.

Это так называемое дежурное напряжение. Два источника на 3,3 вольта и 5 вольт. Сделал ему на 3d принтере корпус. Также можете посмотреть статью, где делал похожий регулируемый блок питания, тоже вырезал из платы ноутбука (https://electro-repair.livejournal.com/3645.html). Это тоже шим контроллер питания оперативной памяти.

Как сделать регулирующий БП из обычного, от принтера

Пойдет речь о блоке питания принтера canon, струйный. Они много у кого остаются без дела. Это по сути отдельное устройство, в принтере держится на защелке.
Его характеристики: 24 вольта, 0,7 ампера.

Понадобился блок питания для самодельной дрели. Он как раз подходит по мощности. Но есть один нюанс – если его так подключить, на выходе получим всего лишь 7 вольт. Тройной выход, разъёмчик и получим всего лишь 7 вольт. Как получить 24 вольта?

Как получить 24 вольта, не разбирая блок?
Ну самый простой – замкнуть плюс со средним выходом и получим 24 вольта.
Попробуем сделать. Подключаем блок питания в сеть 220. Берем прибор и пытаемся измерить. Подсоединим и видим на выходе 7 вольт.
У него центральный разъем не задействован. Если возьмем и подсоединим к двум одновременно, напряжение видим 24 вольта. Это самый простой способ сделать так, чтобы данный блок питания не разбирая, выдавал 24 вольта.

Необходим самодельный регулятор, чтобы в некоторых пределах можно было регулировать напряжение. От 10 вольт до максимума. Это сделать легко. Что для этого нужно? Для начала вскрыть сам блок питания. Он обычно проклеен. Как вскрыть его, чтобы не повредить корпус. Не надо ничего колупать, поддевать. Берем деревяшку помассивнее либо есть киянка резиновая. Кладем на твердую поверхность и по шву лупим. Клей отходит. Потом по всем сторонам простучали хорошенько. Чудесным образом клей отходит и все раскрывается. Внутри видим блок питания.


Достанем плату. Такие бп легко переделать на нужное напряжение и можно сделать также регулируемый. С обратной стороны, если перевернем, есть регулируемый стабилитрон tl431. С другой стороны увидим средний контакт идет на базу транзистора q51.

Если подаем напряжение, то данный транзистор открывается и на резистивном делителе появляется 2,5 вольта, которые нужно для работы стабилитрона. И на выходе появляется 24 вольта. Это самый простой вариант. Как его завести можно еще – это выбросить транзистор q51 и поставить перемычку вместо резистора r 57 и всё. Когда будем включать, всегда на выходе непрерывно 24 вольта.

Как сделать регулировку?

Можно изменить напряжение, сделать с него 12 вольт. Но в частности мастеру, это не нужно. Нужно сделать регулируемый. Как сделать? Данный транзистор выбрасываем и вместо резистор 57 на 38 килоома поставим регулируемый. Есть старый советский на 3,3 килоома. Можно поставить от 4,7 до 10, что есть. От данного резистора зависить только минимальное напряжение, до которого он сможет опускать его. 3,3 -сильно низко и не нужно. Двигатели планируется поставить на 24 вольта. И как раз от 10 вольт до 24 – нормально. Кому нужно другое напряжение, можно большого сопротивления подстроечный резистор.
Приступим, будем выпаивать. Берём паяльник, фен. Выпаял транзистор и резистор.

Подпаял переменный резистор и попробуем включить. Подал 220 вольт, видим 7 вольт на нашем приборе и начинаем вращать переменный резистор. Напряжение поднялось до 24 вольт и плавно-плавно вращаем, оно падает – 17-15-14 то есть снижается до 7 вольт. В частности установлено на 3,3 ком. И наша переделка оказалась вполне успешной. То есть для целей от 7 до 24 вольт вполне приемлемая регулировка напряжения.


Такой вариант получился. Поставил переменный резистор. Ручку и получился регулируемый блок питания – вполне удобный.

Видео канала “Технарь”.

Такие блоки питания найти в Китае просто. Наткнулся на интересный магазин, который продает б/у блоки питания от разных принтеров, ноутбуков и нетбуков. Они разбирают и продают сами платы, полностью исправные на разные напряжения и токи. Самый большой плюс – это то, что они разбирают фирменную аппаратуру и все блоки питания качественные, с хорошими деталями, во всех есть фильтры.
Фотографии – разные блоки питания, стоят копейки, практически халява.

Простой блок с регулировкой

Простой вариант самодельного устройства для питания приборов с регулировкой. Схема популярная, она распространена в Интернете и показала свою эффективность. Но есть и ограничения, которые показаны на ролике вместе со всеми инструкциями по изготовлению регулированного блока питания.


Самодельный регулированный блок на одном транзисторе

Какой можно сделать самому самый простой регулированный блок питания? Это получится сделать на микросхеме lm317. Она уже сама с собой представляет почти блок питания. На ней можно изготовить как регулируемый по напряжению блок питания, так и потоку. В этом видео уроке показано устройство с регулировкой напряжения. Мастер нашёл несложную схему. Входное напряжение максимальное 40 вольт. Выходное от 1,2 до 37 вольта. Максимальный выходной ток 1,5 ампер.

Скачать схему с платой.

Без теплоотвода, без радиатора максимальная мощность может быть всего 1 ватт. А с радиатором 10 ватт. Список радиодеталей.

Приступаем к сборке

Подключим на выход устройства электронную нагрузку. Посмотрим, насколько хорошо держит ток. Выставляем на минимум. 7,7 вольта, 30 миллиампер.

Всё регулируется. Выставим 3 вольта и добавим ток. На блоке питания выставим ограничения только побольше. Переводим тумблер в верхнее положение. Сейчас 0,5 ампера. Микросхема начал разогреваться. Без теплоотвода делать нечего. Нашёл какую-то пластину, ненадолго, но хватит. Попробуем еще раз. Есть просадка. Но блок работает. Регулировка напряжения идёт. Можем вставить этой схеме зачёт.

Видео Radioblogful. Видеоблог паяльщика.

Регулируемый источник напряжения от 5 до 12 вольт

Продолжая наше руководство по преобразованию блока питания ATX в настольный источник питания, одним очень хорошим дополнением к этому является стабилизатор положительного напряжения LM317T.

LM317T – это регулируемый 3-контактный положительный стабилизатор напряжения, способный подавать различные выходы постоянного напряжения, отличные от источника постоянного напряжения +5 или +12 В, или в качестве переменного выходного напряжения от нескольких вольт до некоторого максимального значения, все с токи около 1,5 ампер.

С помощью небольшого количества дополнительных схем, добавленных к выходу блока питания, мы можем получить настольный источник питания, способный работать в диапазоне фиксированных или переменных напряжений, как положительных, так и отрицательных по своей природе. На самом деле это гораздо проще, чем вы думаете, поскольку трансформатор, выпрямление и сглаживание уже были выполнены БП заранее, и все, что нам нужно сделать, это подключить нашу дополнительную цепь к выходу желтого провода +12 Вольт. Но, во-первых, давайте рассмотрим фиксированное выходное напряжение.

Фиксированный источник питания 9В

В стандартном корпусе TO-220 имеется большое разнообразие трехполюсных регуляторов напряжения, при этом наиболее популярным фиксированным стабилизатором напряжения являются положительные регуляторы серии 78xx, которые варьируются от очень распространенного фиксированного стабилизатора напряжения 7805 +5 В до 7824, + 24V фиксированный регулятор напряжения. Существует также серия фиксированных отрицательных регуляторов напряжения серии 79хх, которые создают дополнительное отрицательное напряжение от -5 до -24 вольт, но в этом уроке мы будем использовать только положительные типы 78хх .

Фиксированный 3-контактный регулятор полезен в приложениях, где не требуется регулируемый выход, что делает выходной источник питания простым, но очень гибким, поскольку выходное напряжение зависит только от выбранного регулятора. Их называют 3-контактными регуляторами напряжения, потому что они имеют только три клеммы для подключения, и это соответственно Вход , Общий и Выход .

Входным напряжением для регулятора будет желтый провод + 12 В от блока питания (или отдельного источника питания трансформатора), который подключается между входной и общей клеммами. Стабилизированный +9 вольт берется через выход и общий, как показано.

Схема регулятора напряжения

Итак, предположим, что мы хотим получить выходное напряжение +9 В от нашего настольного блока питания, тогда все, что нам нужно сделать, это подключить регулятор напряжения + 9 В к желтому проводу + 12 В. Поскольку блок питания уже выполнил выпрямление и сглаживание до выхода + 12 В, требуются только дополнительные компоненты: конденсатор на входе и другой на выходе.

Эти дополнительные конденсаторы способствуют стабильности регулятора и могут находиться в диапазоне от 100 до 330 нФ. Дополнительный выходной конденсатор емкостью 100 мкФ помогает сгладить характерные пульсации, обеспечивая хороший переходный процесс. Этот конденсатор большой величины, размещенный на выходе цепи источника питания, обычно называют «сглаживающим конденсатором».

Эти регуляторы серии 78xx выдают максимальный выходной ток около 1,5 А при фиксированных стабилизированных напряжениях 5, 6, 8, 9, 12, 15, 18 и 24 В соответственно. Но что, если мы хотим, чтобы выходное напряжение составляло + 9 В, но имел только регулятор 7805, + 5 В ?. Выход + 5 В 7805 относится к клемме «земля, Gnd» или «0 В».

Если бы мы увеличили это напряжение на контакте 2 с 4 В до 4 В, выход также увеличился бы еще на 4 В при условии достаточного входного напряжения. Затем, поместив небольшой 4-вольтный (ближайшее предпочтительное значение 4,3 В) диод Зенера между контактом 2 регулятора и массой, мы можем заставить 7805 5 В стабилизатор генерировать выходное напряжение +9 В, как показано на рисунке.

Увеличение выходного напряжения

Итак, как это работает. Стабилитрон 4,3 В требует обратного тока смещения около 5 мА для поддержания выхода с регулятором, потребляющим около 0,5 мА. Этот полный ток 5,5 мА подается через резистор «R1» с выходного контакта 3.

Таким образом, значение резистора, необходимого для регулятора 7805, будет R = 5 В / 5,5 мА = 910 Ом . Диод обратной связи D1, подключенный через входные и выходные клеммы, предназначен для защиты и предотвращает обратное смещение регулятора, когда входное напряжение питания выключено, а выходное питание остается включенным или активным в течение короткого периода времени из-за большой индуктивности. нагрузка, такая как соленоид или двигатель.

Затем мы можем использовать 3-контактные регуляторы напряжения и подходящий стабилитрон для получения различных фиксированных выходных напряжений от нашего предыдущего источника питания в диапазоне от + 5В до + 12В. Но мы можем улучшить эту конструкцию, заменив стабилизатор постоянного напряжения на регулятор переменного напряжения, такой как LM317T .

Источник переменного напряжения

LM317T – это полностью регулируемый 3-контактный положительный стабилизатор напряжения, способный подавать на 1,5 А выходное напряжение в диапазоне от 1,25 В до чуть более 30 Вольт. Используя соотношение двух сопротивлений, одно из которых является фиксированным значением, а другое – переменным (или оба фиксированным), мы можем установить выходное напряжение на желаемом уровне с соответствующим входным напряжением в диапазоне от 3 до 40 вольт.

Регулятор переменного напряжения LM317T также имеет встроенные функции ограничения тока и термического отключения, что делает его устойчивым к коротким замыканиям и идеально подходит для любого низковольтного или домашнего настольного источника питания.

Выходное напряжение LM317T определяется соотношением двух резисторов обратной связи R1 и R2, которые образуют сеть делителей потенциала на выходной клемме, как показано ниже.

LM317T Регулятор переменного напряжения

Напряжение на резисторе R1 обратной связи является постоянным опорным напряжением 1,25 В, V ref, создаваемым между клеммой «выход» и «регулировка». Ток регулировочной клеммы является постоянным током 100 мкА. Так как опорное напряжение через резистор R1 является постоянным, постоянным током я буду течь через другой резистор R2 , в результате чего выходного напряжения:

Затем любой ток, протекающий через резистор R1, также протекает через резистор R2 (игнорируя очень маленький ток на регулировочной клемме), причем сумма падений напряжения на R1 и R2 равна выходному напряжению Vout . Очевидно, что входное напряжение Vin должно быть как минимум на 2,5 В больше, чем требуемое выходное напряжение для питания регулятора.

Кроме того, LM317T имеет очень хорошее регулирование нагрузки, при условии, что минимальный ток нагрузки превышает 10 мА. Таким образом , чтобы поддерживать постоянное опорное напряжение 1.25V, минимальное значение резистора обратной связи R1 должно быть 1.25V / 10mA = 120 Ом , и это значение может варьироваться от 120 Ом до 1000 Ом с типичными значениями R 1 является приблизительно 220Ω, чтобы 240Ω лет для хорошей стабильности.

Если мы знаем значение требуемого выходного напряжения, Vout и резистор обратной связи R1 , скажем, 240 Ом, то мы можем рассчитать значение резистора R2 из вышеприведенного уравнения. Например, наше исходное выходное напряжение 9 В даст резистивное значение для R2 :

R1. ((Vout / 1,25) -1) = 240. ((9 / 1,25) -1) = 1 488 Ом

или 1500 Ом (1 кОм) до ближайшего предпочтительного значения.

Конечно, на практике резисторы R1 и R2 обычно заменяют потенциометром, чтобы генерировать источник переменного напряжения, или несколькими переключенными предварительно установленными сопротивлениями, если требуется несколько фиксированных выходных напряжений.

Но для того, чтобы уменьшить математические вычисления, необходимые для расчета значения резистора R2, каждый раз, когда нам нужно определенное напряжение, мы можем использовать стандартные таблицы сопротивлений, как показано ниже, которые дают нам выходное напряжение регуляторов для различных соотношений резисторов R1 и R2 с использованием значений сопротивления E24 ,

Соотношение сопротивлений R1 к R2

Значение R2Значение резистора R1
150180220240270330370390470
1002,081,941,821,771,711,631,591,571,52
1202,252,081,931,881,811,701,661,631,57
1502,502,292,102,031,941,821,761,731,65
1802,752,502,272,192,081,931,861,831,73
2203,082,782,502,402,272,081,991,961,84
2403,252,922,612,502,362,162,062,021,89
2703,503,132,782,662,502,272,162,121,97
3304,003,543,132,972,782,502,362,312,13
3704,333,823,353,182,962,652,502,442,23
3904,503,963,473,283,062,732,572,502,29
4705,174,513,923,703,433,032,842,762,50
5605,925,144,434,173,843,373,143,042,74
6806,925,975,114,794,403,833,553,433,06
8208,086,945,915,525,054,364,023,883,43
10009,588,196,936,465,885,044,634,463,91
120011,259,588,077,506,815,805,305,104,44
150013,7511,679,779,068,196,936,326,065,24

Изменяя резистор R2 для потенциометра на 2 кОм, мы можем контролировать диапазон выходного напряжения нашего настольного источника питания от примерно 1,25 вольт до максимального выходного напряжения 10,75 (12-1,25) вольт. Тогда наша окончательная измененная схема переменного электропитания показана ниже.

Цепь питания переменного напряжения

Мы можем немного улучшить нашу базовую схему регулятора напряжения, подключив амперметр и вольтметр к выходным клеммам. Эти приборы будут визуально отображать ток и напряжение на выходе регулятора переменного напряжения. При желании в конструкцию также может быть включен быстродействующий предохранитель для обеспечения дополнительной защиты от короткого замыкания, как показано на рисунке.

Недостатки LM317T

Одним из основных недостатков использования LM317T в качестве части цепи питания переменного напряжения для регулирования напряжения является то, что до 2,5 вольт падает или теряется в виде тепла через регулятор. Так, например, если требуемое выходное напряжение должно быть +9 вольт, то входное напряжение должно быть целых 12 вольт или более, если выходное напряжение должно оставаться стабильным в условиях максимальной нагрузки. Это падение напряжения на регуляторе называется «выпадением». Также из-за этого падения напряжения требуется некоторая форма радиатора, чтобы поддерживать регулятор в холодном состоянии.

К счастью, доступны регуляторы переменного напряжения с низким падением напряжения, такие как регулятор низкого напряжения с низким падением напряжения National Semiconductor «LM2941T», который имеет низкое напряжение отключения всего 0,9 В при максимальной нагрузке. Это низкое падение напряжения обходится дорого, так как это устройство способно выдавать только 1,0 ампер с выходом переменного напряжения от 5 до 20 вольт. Однако мы можем использовать это устройство для получения выходного напряжения около 11,1 В, чуть ниже входного напряжения.

Таким образом, чтобы подвести итог, наш настольный источник питания, который мы сделали из старого блока питания ПК в предыдущем учебном пособии, может быть преобразован для обеспечения источника переменного напряжения с помощью LM317T для регулирования напряжения. Подключив вход этого устройства через желтый выходной провод + 12 В блока питания, мы можем иметь фиксированное напряжение + 5 В, + 12 В и переменное выходное напряжение в диапазоне от 2 до 10 вольт при максимальном выходном токе 1,5 А.

Простой регулируемый блок питания своими руками

Простой регулируемый блок питания
Когда собираешь какую либо электронную самоделку, то для ее проверки нужен блок питания. На рынке большое разнообразие готовых решений. Красиво оформлены, имеют много функций. Так же много kit-наборов для самостоятельного изготовления. Я уже не говорю про китайцев с их торговыми площадками. Покупал я на Алиэкспресс платы модулей понижающего преобразователя, вот на нем и решил сделать. Напряжение регулируется, тока хватает. Блок в основе имеет модуль из Китая, так же радиодетали которые были у меня в мастерской(давно лежали и ждали своего часа). Регулирует блок от 1.5 вольта и до максимума(все зависит от применяемого выпрямителя до платы регулировки.

Описание компонентов


Есть у меня трансформатор 17.9 Вольт и током 1.7Ампера. Он установлен в корпусе, значит подбирать последний не нужно. Обмотка довольно толстая, думаю и 2 Ампера потянет. Вместо трансформатора можно применить импульсный блок питания ноутбука, но тогда нужен еще и корпус для остальных компонентов.
Простой регулируемый блок питания
Выпрямителем переменного тока, будет диодный мост, можно собрать и из четырех диодов. Сглаживать пульсации будет электролитический конденсатор, у меня 2200 микрофарад и рабочим напряжением 35 вольт. Применил б/у, был в наличии.
Простой регулируемый блок питания
Регулировать выходное напряжение буду китайским модулем. Их на рынке большое разнообразие. Он обеспечивает хорошую стабилизацию и довольно надежен.
Простой регулируемый блок питания
Для комфортной регулировки выходного напряжения буду применять регулировочный резистор на 4.7 кОм. На плате установлен 10 кОм, но у меня какой был, такой и поставлю. Резистор еще начала 90-х. При таком номинале, регулировка обеспечивается плавно. Так же подобрал ручку на него, тоже лохматых годов.
Простой регулируемый блок питания
Индикатором выходного напряжения служит вольтметр из Китая. У него три провода. Два провода питание вольтметра(красный и черный), а третий(синий) измеряющий. Можно соединить красный и синий вместе. Тогда вольтметр будет питаться от выходного напряжения блока, то есть загораться индикация от 4 вольт. Согласитесь не удобно, поэтому я его буду питать отдельно, об этом далее.
Простой регулируемый блок питания
Для питания вольтметра я применю отечественную микросхему стабилизатора напряжения на 12 вольт. Тем самым обеспечу работу индикатора-вольтметра от минимума. Питается вольтметр через красный плюс и черный минус. Измерение осуществляется через черный минус и синий плюс выход блока.
Простой регулируемый блок питания
Клеммы у меня отечественные. Имеют отверстия для штекеров типа «банан» и отверстия под зажим проводов. Похожие можно купить в Китае. Так же подобрал провода с наконечниками.
Простой регулируемый блок питания

Сборка блока питания


Все собирается по простой зарисованной схеме.
Простой регулируемый блок питания
Диодный мост нужно припаять к трансформатору. Я его выгнул для комфортной установки. На выход моста припаял конденсатор. Получилось не выйти за габариты по высоте.
Простой регулируемый блок питания
Кренку питания вольтметра прикрутил к трансформатору. В принципе она не греется, и так она стоит на своем месте и никому не мешает.
Простой регулируемый блок питания
На плате регулятора выпаял резистор и припаял два проводка под выносной резистор. Так же припаял провода под выходные клеммы.
Простой регулируемый блок питания
На корпусе разметив отверстия под все, что будет на передней панели. Вырезал отверстия под вольтметр и одну клемму. Резистор и вторую клемму устанавливаю на стык коробки. При сборке коробки все зафиксируется сжатием обеих половинок.
Простой регулируемый блок питания
Клемма и вольтметр установлены.
Простой регулируемый блок питания
Так получилось установить вторую клемму и регулировочный резистор. Под ключ резистора сделал вырез.
Простой регулируемый блок питания
Вырезаем окно под выключатель. Корпус собираем и закрываем. Осталось только распаять выключатель и регулируемый блок питания готов к применению.
Простой регулируемый блок питания

Испытание блока


Блок питания регулирует напряжение от 1.23 Вольта.
Простой регулируемый блок питания
Максимальное напряжение 19 Вольт.
Простой регулируемый блок питания
Отображает вольтметр довольно точно. 20-30 милливольт не считаю таким уж сильным отклонением.
Простой регулируемый блок питания
Подключил моторчик. Напряжение не проседает.
Данный блок питания прост и не отображает ток нагрузки. Может это и минус, но данный корпус не вместил бы еще амперметра и регулировки тока не предусмотрено. Так что с поставленной задачей я справился.
Простой регулируемый блок питания
Такой вот регулируемый блок питания получился. Данная конструкция простая и доступна для повторения каждому. Детали не являются редкими.
Всем удачи в изготовлении!

Смотрите видео


Простой лабораторный блок питания

Приветствую, Самоделкины!
Лабораторный блок питания один из основных приборов радиолюбительской лаборатории. Сегодня мы соберём и проверим интересную схему. Приведенный в данной статье вариант довольно популярен на просторах всемирной паутины под названием простой и доступный блок питания.


Данной схеме отведена отдельная ветка форума, разработана она человеком под никнеймом «olegrmz».

Схема была неоднократно доработана и в настоящее время существует в общей сложности порядка десятка различных вариаций и модификаций. В качестве примера сделаем самую первую версию от автора. Дальнейшая инструкция взята с YouTube канала «AKA KASYAN».
Пару слов о схеме. По сути это полноценный лабораторный источник питания со стабилизацией как по напряжению, так и по току. Диапазон регулировки выходного напряжения от 0В до 25В, тока практически от 0 до 1,5-2А.

При необходимости выходное напряжение данного блока питания можно сделать до 50В:

А ток хоть 10А. Для этого необходимо добавить силовые транзисторы.

Схема работает полностью в линейном режиме, обеспечивает очень плавную регулировку как по напряжению, так и по току. Пульсации выходного напряжения практически отсутствуют.

Сердцем схемы является сдвоенный операционный усилитель.

В левой части схемы находится стабилизатор напряжения.

Причем, как вы могли заметить стабилизатора напряжения тут целых два.

Возникает вопрос: зачем это нужно и почему нельзя ограничиться одним? Второй стабилизатор на 12В, причем достаточно неплохой, но проблема заключается в том, что на его вход можно подавать напряжение не более 30-35В, а вот первый спокойно переваривает более высокие напряжения, но его выходное напряжение стабильностью не блещет. В данном случае один стабилизатор как бы покрывает недостатки другого. Во время работы они почти не нагреваются, так как питают только операционный усилитель, ток потребление которого невелик.

Операционный усилитель питается от второго стабилизатора напряжения 12В, в оригинальной схеме применена микросхема lm324 в составе которой 4 операционника.


Но так как в схеме у нас задействовано всего два канала, было решено заменить операционный усилитель микросхемой lm358, она содержит в себе как раз 2 независимых операционника.

Интересна данная схема еще тем, что обратная связь по току управляет выходным напряжением.
При работе источника питания как стабилизатор напряжения, первый операционный усилитель работает как компаратор и обеспечивает стабильное выходное напряжение, которое является опорным для второго усилителя, на котором построена регулировка напряжения.
Система ограничения тока классическая.

На неинвертирующий вход первого операционного усилителя через делитель подано опорное напряжение.
Далее при подключении нагрузки падение напряжения, которое будет образовываться на датчике тока, сравнивается с опорным. Исходя из разницы состояния выхода операционного усилителя плавно изменяется.

Принудительным изменением опорного напряжения с помощью переменного резистора, мы фактически заставляем операционный усилитель менять свое выходное напряжение, что в итоге приведет к плавному открыванию или закрыванию силового транзистора и изменению выходного тока источника питания.


Силовой транзистор. В конкретном примере автор использовал 2SD1047.

Он достаточно высоковольтный, ток коллектора составляет 12А.

А рассеиваемая коллектором мощность составляет порядка 100Вт.

Силовой транзистор может быть заменен на любой другой аналогичный с током коллектора от 7А, так же желательно применение транзисторов в корпусе ТО-247 или ТО-3.

Схема работает в линейном режиме, поэтому транзистор необходимо установить на массивный радиатор, возможно понадобится дополнительный обдув. Радиатор, который использует автор, довольно мал, здесь необходим радиатор гораздо больше.

Сигнал с операционного усилителя инвертируется маломощным транзистором и подается на предвыходной ключ, который собственно управляет выходным транзистором.


В схеме имеется 2 переменных резистора. Они необходимы для плавной и точной регулировки выходного напряжения.

Полный оборот резистора точной регулировки позволяет производить регулировку напряжения в пределах примерно от 3В. На изображении ниже указан резистор, который задает предел выходного напряжения.

На печатной плате присутствуют 3 перемычки. Можно было бы обойтись и без них, но при разводке платы автор торопился, в общем могло быть и лучше, но тем не менее плата полностью рабочая. Ее вы можете скачать вместе с общим архивом проекта по этой ссылке.

На плате предусмотрен выпрямитель с электролитом по питанию.

Все силовые компоненты, которые в процессе работы будут нагреваться, расположены рядом. Это необходимо для удобства установки на общий радиатор. Притом необходимо изолировать все компоненты от корпуса радиатора специальными теплопроводящими прокладками и пластиковыми втулками.

Входной выпрямитель с током от 4-5А, но желательно поставить 10-амперный, электролит на 50-63В с емкостью от 2200 мкФ.

Приступим к испытаниям. Начнем с простого — плавность регулировки минимальное выходное напряжение. На вход подается 30В, максимальное выходное напряжение составляет порядка 23В, минимальное напряжение по нулям, регулировка очень плавная, можно выставить хоть 10мВ.

Ток потребления стабилизатора без нагрузки составляет порядка 10-20мА, но это напрямую будет зависеть от выходного напряжения, так как на выходе имеется нагрузочный резистор.



К ограничению тока претензий нет, все работает как надо. Под нагрузкой ток с достаточной плавностью регулируется. Верхний предел составляет порядка 1,5А, нижний – 60мА, но поиграв с соответствующим делителем (см. изображение ниже) можно сделать и меньше.

Теперь минусы данного блока питания. Проблема состоит вот в чем, если попробовать блок на короткое замыкание при минимальном токе, то ограничение тока не происходит и, если трансформатор мощный, то с силовым транзистором можно попрощаться.

Но стоит отметить, что в последующих версиях схема была доработана и эта проблема полностью решена.

А вот при максимальном токе все работает четко, с коротким замыканием блок справляется отлично.

Следующий тест — проверка работы обратной связи, другими словами — стабилизация при резких скачках и перепадах сетевого напряжения. Перепады напряжения будем имитировать другим лабораторным источником питания, который, собственно, и будет питать наш стабилизатор. Выходное напряжение стабилизатора выставлено 12В.


Как видим, тут всё четко, заданное напряжение держится стабильно. Далее проверим стабилизацию по току, выставляем выходной ток в 1А и повторяем тот же тест.

Здесь тоже все хорошо, блок также ведет себя адекватно, выходной ток не меняется.

На этом все. Благодарю за внимание. До новых встреч!

Видеоролик автора:


Источник Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Самодельный лабораторный блок питания: vladikoms — LiveJournal

Когда то у меня был советский источник питания Б5-47, он очень громко и противно пищал, грелся, периодически из него шел дым. Таким образом пользование сей девайсом более 5 минут причиняло просто невыносимые моральные страдания. Явно он был неисправен. Вскрытие показало что лучше его сразу выбросить и забыть. К тому же его интерфейс управления мне никогда не нравился, юзабельность тоже оставляла желать лучшего. Понятно, что без нормального БП жизнь скучна, решил быстренько сделать БП из того что было под рукой. В итоге изготовление данной конструкции по разным причинам затянулось аж на 2 года. Собственно вот результат:

P1020361c


Требования были следующие: регулируемое выходное напряжение до 30 В с регулируемым токоограничением до 5 А. Разумеется должна применяться цифровая индикация. Дизайн должен напоминать MASTECH HY3005D и им подобные. Единственное — мне никогда не нравилось что первый прибор показывает ток. Ну неправильно это — напряжение всегда первично, соответственно первый прибор должен показывать именно напряжение.

hy3005d

Первоначально проектировал схему на базе линейного стабилизатора К142ЕН2А, но в итоге отказался от этой идеи — низкий КПД, регулирующий силовой транзистор сильно грелся даже с учетом того что был предусмотрен переключатель отпаек на вторичной стороне трансформатора. Да и вообще всё как-то криво работало. Пришлось выпилить.

Второй вариант схемы разработал на базе легендарного ШИМ-контроллера TL494, который в разных вариациях встречается во многих компьютерных блоках питания. На этот раз всё получилось как надо.

Вкратце о конструкции:

Принципиальная схема (кликабельно)

Power_supply_schematic.GIF

Как уже говорил — девайс собрал из запчастей, большинство которых были в радиусе 5 метров от меня.

Понижающий трансформатор нашелся под столом, марки я его не знаю. Напряжение на вторичке около 40 В.
D1 — TL494, VD1 — диод шоттки и тороидальный дроссель L1 выпаял из неисправного компьютерного блока питания: диод шоттки используется в схеме выпрямления, он установлен на радиаторе возле импульсного трансформатора, тороидальный дроссель расположен рядом с ним.
LM358 — весьма хороший и распространенный операционный усилитель. Продаётся почти на каждом углу. Рекомендован к приобретению.
Шунт R12 — взял из какого-то старого связисткого оборудования: представляет собой 3 толстых изогнутых проволочки.

Резисторы R9, R10 используются для регулирования выходного напряжения (грубо, точно). Резисторы R3, R4 используются для регулирования токоограничения (грубо, точно).
При наладке БП подстроечным резистором R15 регулируется порог переключения светодиодной сигнализации. Еще возникли проблемы с интегральным стабилизатором 7805 — при входном напряжении около 40 В он начинал ужасно глючить — просаживал выходное напряжение, решил проблему установив по входу 1 Вт гасящий резистор R13.

Сам корпус взят от древнего самопишущего регистратора. Компоновка получилась следующей — в середине корпуса установлен силовой трансформатор, который вошел туда как родной, видимо они были созданы друг для друга. В передней части БП расположена электронная схема управления, органы управления и сигнализации. В задней части корпуса расположена вся силовая электроника. Таким образом трансформатор как бы делит БП на 2 части — слаботочную и силовую.

P1020330c

Передняя часть корпуса с откинутой лицевой крышкой. Цифровые измерительные приборы приехали из Китая, они заводского производства. Электронная схема управления состоит из 2 плат: плата регулятора напряжения — TL494 c обвязкой, и плата сигнализации — включает в себя микросхемы D3,D4. Почему не сделал на одной плате? Просто сигнализацию я делал несколько позже чем регулятор, и отдельно доводил её «до ума». Там тоже были свои заморочки.

P1020338

Задняя часть корпуса. На общем радиаторе установлены диодный мост KBPC 3510, силовой транзистор КТ827А, дроссель L1, шунт R12. Всё это дело изнутри обдувается 12 сантиметровым вентилятором. В задней части корпуса установлены также предохранители, сглаживающие конденсаторы C1, C4 и маленький вспомогательный импульсный блок питания для работы вентилятора и цифровых измерительных приборов.

P1020333c

Конечно, можно было бы купить фирменный БП и не городить огород. Но иногда хочется самому поизобретать велосипед

P1020364c

Если кто-то задумает повторить конструкцию вот здесь выложил принципиальную схему в высоком разрешении и чертежи печатных плат в формате Sprint Layout.

Обновление 09.01.2019

По прошествии времени пользователи в комментариях поделились своими модификациями блоков питания. Рассмотрим подробнее предложенные варианты. Обсуждение всех конструкций по-прежнему доступно в комментариях

Модификация № 1

Предложена acxat_smr

Принципиальная схема

New_bp.jpg

Драйвер полевика (точнее, двух параллельно — выравниванием токов занимаются сами полевики) запитан от отдельного источника 15в. У себя взял промагрегат 9-36в/15в TEN 12-2413. От него же запитаны кулеры.
TL494 запитана от отдельного источника 24 в.
Потенциометр вольтажа любой, замер тока с шунта амперметра. Трансформатор выдает 34 в, выпрямленного около 45.
Проблема мощности упиралась в дросселе. Если 5-амперник нормально шел, то 20 помучал.
Практическим путем нашел вариант два параллельно на кольцах от компового. 23 витка проводом 1,15мм.

Внешний вид конструкции

New_bp.jpg

New_bp.jpg

Модификация № 2

Предложена rond_60

Принципиальная схема

New_bp.jpg

Недавно натолкнулся на эту статью про ЛБП на TL494. Загорелся желанием собрать БП по этой схеме, тем более уже давно валялся трансформатор от польского блока питания на 24в и 4а. Вторичка выдает 34в переменки, после моста с кондером 10000х63в — 42в. Собрал навесным монтажом по этой схеме, включил и сразу дым из 494-й. Все проверил, заменил микросхему, включаю — на холостом работает, на выходе напряжение пытается регулироваться, прикоснулся к 494 — горячая! Добавил номинал 4.7к резистору R1 — блок работает, но стоило подключить лампочку 24в 21вт, как взорвалась микросхема в районе 9, 10 ножки. Отмотал с вторичной обмотки транс-ра несколько витков (снизил напряжение на 4 вольта) и все равно горят микросхемы. Питание на 8,11,12 ноги подавал 12в с другого БП, мотал дроссель разным по диаметру проводом и количеством витков — толку нет (сжег 6 микрух). У меня есть кой — какой опыт по переделке компьютерных блоков в зарядные устройства и регулируемые блоки питания на основе TL494 и ее аналогах. Начал собирать обвязку ШИМа по схемам к комповым БП. Изменил управление силовым транзистором, подал питание на ШИМ от отдельного источника на 12в (переделал зарядку от сотового телефона) и все — блок заработал! Пару дней настраивал на регулировки и свист дросселя (оссцила нет) теперь надо отлутить плату управления и можно собирать в корпус.

Сегодня настраивал свой БП. Спасибо большое shc68 за подсказку проверять пульсации на выходе динамиком если нет осциллографа. При малой нагрузке (лампочка 12в, 21вт) из динамика слышался гул и вой когда крутил регулятор тока. Устранил это безобразие установкой дополнительных конденсаторов (на схеме обведено красным цветом).
Как рекомендовал shc68 конденсатор С15 действительно жизненно важный. Еще с помощью динамика определил бракованный потенциометр на регулировку тока. При его вращении из динамика слышался шорох и треск. После его замены и установки доп. конденсаторов из динамика тишина (чуть слышное шипение) при разной нагрузке на выходе БП.
Делал тест на нагрев деталей блока. При такой нагрузке в течении 1.5 часов только транзистор грелся (трогал пальцем его корпус), а радиатор, где он установлен, чуть теплый (обдувается вентилятором). Дроссель — холодный, трансформатор тоже.

Внешний вид конструкции

PS03.JPG

PS05.JPG

PS04.JPG

PS02.JPG

PS01.JPG

Модификация № 3

Предложена andrej_l

За основу была взята схема с полевиком https://ic.pics.livejournal.com/rond_60/78751049/3328/3328_original.jpg
При отладке появились проблемы с управлением полевика через трансформатор. На небольших токах нагрузки он работал, при увеличении более 2 ампер происходил срыв и падение тока (при скважности ШИМ > 30%). Пришлось убрать трансформатор и вместо него поставить оптодрайвер ACPL3180 с питанием от отдельной обмотки трансформатора.
Сделал 2 независимых канала с регулировкой напряжения до 30V и ограничения тока до 10A. Второй канал запустился сразу, только пришлось подстроить максимальные значения напряжения и тока. Регулировочные резисторы — 10 оборотные
https://ru.aliexpress.com/item/Free-Shipping-3590S-2-103L-3590S-10K-ohm-Precision-Multiturn-Potentiometer-10-Ring-Adjustable-Resistor/32673624883.html?spm=a2g0s.11045068.rcmd404.3.de3456a4CSwuV3&pvid=b572f0cb-2d84-4353-a657-a28824b99672&gps-id=detail404&scm=1007.16891.96945.0&scm-url=1007.16891.96945.0&scm_id=1007.16891.96945.0
В качестве V-A метра применён китайский модуль
https://ru.aliexpress.com/item/DC-100-10A-50A-100A/32834619911.html?spm=a2g0s.9042311.0.0.466b33edLWGUwZ с доработкой, достигнута точность показаний 2% при больших токах и 10 мА при токах до 1А.
Радиатор на транзисторе и диоде один от компьютерного блока питания. При нагрузке на лампу 15V 150W он нагревается до 80 градусов (больше греется диод). Настроил включение вентилятора охлаждения на 50 град. (один на 2 канала)
Окончательная схема одного канала

PS01.JPG

Rшунт 0,0015 Ом — Это встроенный шунт прибора, к нему добавляются сопротивление проводов от индикатора до клемм XS104 и «-«, при большом токе они оказывают значительное влияние. Провод 1,5 кв.мм
Настройка:
1 Запускаем задающий генератор на TL494 и драйвер с отключенным затвором VT101. На выходе драйвера будет ШИМ около 90%. Настраиваем частоту TL в пределах 80 — 100 кГц подбирая R107
2 Подключаем затвор транзистора (для подстраховки питание +45 подаём через токоограничивающий балласт, я брал 2 лампы 24V 150W последовательно) и смотрим выход БП. Подключаем небольшую нагрузку (я брал 100 Ом). Если напряжение на выходе регулируется то устанавливаем максимальное значение выхода с помощью R122.
3 Убираем токоограничивающий балласт, нагружаем выход сильнотоковой нагрузкой (я брал лампу 15V 150W) и настраиваем максимальный ток в нагрузке: R106 постепенно выводим в нижнее по схеме положение, подбираем R104 и R105 добиваясь срабатывания защиты по току (у меня ограничение по току 10А). При сработке токовой защиты регулировка напряжения с помощью R101 в большую сторону не приводит к его росту на выходе.
4 Узел индикации на операционнике и светодиодах не нуждается в настройке (его единственный недостаток — небольшая подсветка красного светодиода когда горит зелёный, можно исправить включив последовательно с красным обычный диод.
5 настраиваем Р101 на нужную температуру срабатывания вентилятора нагрузив блок питания на приличную нагрузку измеряя температуру диода и транзистора на радиаторе.

Внешний вид:

PS01.JPG

Осциллограммы

PS01.JPG

PS01.JPG

PS01.JPG

PS01.JPG

Лабораторный блок питания с регулировкой по высокой стороне

Приветствую, Самоделкины!
В этой статье мы рассмотрим процесс самостоятельного изготовления регулируемого блока питания, но не с двумя степенями понижения, а с одной. Автором данной самоделки является Роман (YouTube канал «Open Frime TV»).

Практически все лабораторные блоки питания представляют из себя следующее:

Т.е. сначала установлен простой блок питания, который понижает сетевое напряжение до определенного уровня, а уже следом за ним установлен dc-dc преобразователь, который уже производит непосредственную регулировку тока и напряжения. Но почему бы не сделать регулировку прямо по высокой стороне? Такое решение позволит уменьшить размеры устройства и значительно увеличить КПД. Но с этим не все так просто. В процессе построения данной самоделки автор столкнулся с множеством проблем. И забегая вперед стоит отметить, что удалось побороть почти все возникшие проблемы, осталась лишь одна, хоть незначительная, но все-таки проблема. Однако обо всем по порядку.

Для данного проекта автор изготовил печатную плату методом ЛУТ, а это означает, что самостоятельно повторить проект сможет практически любой желающий. Итак, а теперь с самого начала. Сама идеи достаточно простая. Требовалось сделать достойный лабораторный блок питания с минимальным количеством деталей.

В результате в голове автора родилась незамысловатая схема и с первого взгляда вроде бы все должно работать. Для испытаний была нарисована и изготовлена печатная плата. Итак, блок стартовал, но при попытке уменьшить напряжение появлялся ужасный писк и происходил перегрев транзисторов.

Так как автору было не понятно почему такое происходит, поэтому он установил щуп осциллографа на затвор транзистора и увидел вот такую картину:

На поиск причины данной проблемы автор потратил почти месяц, но в конце концов нашел решение на просторах интернета. Проблема крылась в накопленной энергии трансформатора гальванической развязки. Решений было несколько. Тут можно дополнительно нагрузить обмотки ТГР, или сделать другую схему управления. Был выбран второй вариант. Схему подкинул участник форума радиолюбителей под ником «Телекот».


И после изготовления очередной платы все завелось.

Импульсы красивые, нагрев практически полностью отсутствует. Снаппер по первичке справляется отлично, хотя немного греется. И как уже говорилось выше появилась проблема, которую до конца побороть так и не удалось. Проблема заключается в следующем: присутствует писк на низком напряжении. Все дело в том, что когда на выходе установлено напряжение от 0,6 до 2,5В управляющим импульсам просто некуда уменьшаться и микросхема начинает их пропускать, следовательно, понижается частота и в результате мы начинаем слышать как работает блок.

По сути в этом нет ничего страшного, при таком заполнении насытиться сердечник вряд ли сможет. Но давайте все же попробуем решить данную проблему. Итак, какие тут возможны варианты? Самый простой способ — это установить резистор в нагрузку, но так как у нас же регулируемый блок питания, поэтому при напряжении в 30В может просто напросто перегореть.

Второе решение — уменьшить количество витков дросселя, таким образом он будет меньше накапливать энергии и, следовательно, импульсы должны возрасти.

Автор предпочел остановиться на втором варианте, но это так называемый «костыль». Есть еще один вариант решения данной проблемы и он гораздо лучше.

Решение это называется динамическая нагрузка, она позволяет задать один и тот же ток потребление при низком и высоком напряжении. Но автор решил в очередной раз не переделывать плату, поэтому в данном случае использовал второй вариант решения возникшей проблемы.
Конечная схема выглядит вот так:

Тут у нас в прямоугольнике дежурка, ее можете сделать любую.

Автор решил использовать дежурку из своего недавнего проекта, так как она простая и надежная.
На дежурке не будем задерживаться, давайте перейдём к основной схеме.

Как видите деталей здесь не так уж и много, а функционал полноценного блока питания. Принцип работы довольно прост. Дежурка дает питание для tl494, она начинает формировать импульсы, которые поступают на ТГР.

ТГР в свою очередь гальванически отвязывает низкую сторону от высокой. Импульсы с ТГРа поступают на затворы транзисторов в противофазе.

Ну а далее стандартная схема полумоста.


Как видите принцип работы довольно простой. Следующим шагом будет изготовление печатной платы.

На плате предусмотрено управление кулером по температуре, но можно переделать плату, и сделать так, чтобы кулер вращался постоянно, и сюда поставить динамическую нагрузку, это уже на ваш выбор.


Плата получилась вот такая:

Теперь ее необходимо запаять. Когда все элементы на своих местах, приступаем к намоточным работам. Начнем, пожалуй, с дросселей. Входной дроссель защищает сеть от шума, который издает непосредственно сам блок питания. Мотать его будем на ферритовом кольце проницаемостью 2000, диаметр кольца составляет 22мм. Мотаем 2 по 10 витков проводом 0,5мм.


Далее выходной дроссель. Вначале было намотано около 15 витков миллиметрового провода сложенного вдвое на кольце из порошкового железа, но в итоге их пришлось снизить до 7, в результате чего писк почти полностью пропал.


Следующим шагом изготовим ТГР. Для этого автор использовал вот такой каркас и Е-образный сердечник Е16, но с таким же успехом можно намотать и на кольце.

Сердечник изготовлен из феррита с проницаемостью 2000-2200. Производим необходимые расчеты при помощи программы Старичка.

Входное напряжение нам известно, а на выходе хотим получить 12-15В. Схему управления выбираем мост, так как к обмотке будет приложено все напряжение, а не половина как в полу мосте.
Для улучшения магнитной связи первичную обмотку необходимо разделить на две части. Половина в самом низу, а половина поверх вторичной обмотке.


Непосредственно вторичку мотаем в 2 провода рядом, это позволит избежать перекоса напряжений. Также одной из проблем в данном случае является фазировка. Необходимо четко распределить начало и конец обмоток в соответствии с точками на плате.

Теперь осталось намотать основной трансформатор. Изначально расчет был произведен на напряжение 36В, но писк был уже до 5В, поэтому пришлось перемотать трансформатор на 30В выходного напряжения плюс запас для стабилизации.

В намотке трансформатора нет ничего сложного. Так же делим первичку на две части, а вторичку между ними. При этом стараемся мотать виток к витку по возможности избегая нахлестов, таким образом мы повышаем добротность трансформатора. Не забываем при этом изолировать обмотки с помощью специальной ленты.

С намоткой покончено, запаиваем получившиеся изделия на плату и наш самодельный лабораторный блок питания полностью готов.

Теперь настало время тестов. Подключаем мультиметр к выводам блока питания и начинаем регулировать напряжение.



Как видим, с этим никаких проблем нет, все отлично. Теперь давайте подключим нагрузку. В качестве нагрузки выступит лампа накаливания на 36В мощностью 100Вт.

Как видите прогон по всему диапазону напряжений прошел успешно, блок справился на отлично. Теперь пробуем ограничить ток. Для этого необходимо вращать второй потенциометр и регулировка тока тоже работает исправно. Как было сказано выше в данном варианте платы установлен термоконтроль, давайте проверим его работу тоже. Для этого к плате подключаем кулер и начинаем нагревать наш термистор с помощью фена.

Как видим, при достижении определенной температуры кулер включается и начинает вращаться при этом происходит охлаждение платы. Подводя итоги можно сказать, что данный блок не идеален, и его лучше использовать как зарядку или питание для неприхотливых схем, хотя в целом получилось неплохо. Благодарю за внимание. До новых встреч!

Видеоролик автора:


Источник Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

БЛОК ПИТАНИЯ С РЕГУЛИРОВКОЙ ТОКА И НАПРЯЖЕНИЯ

   Попалась в интернете недавно любопытная схемка простого, но довольно неплохого блока питания начального уровня, способного выдавать 0-24 В при ток до 5 ампер. В блоке питания предусмотрена защита, то есть ограничение максимального тока при перегрузке. В приложенном архиве есть печатная плата и документ, где приведено описание настройки данного блока, и ссылка на сайт автора. Прежде чем собирать, прочитайте внимательно описание.

Схема БП с регулировкой тока и напряжения

Схема БП с регулировкой тока и напряжения

   Изначально на фото печатной платы автора были ошибки, печатка была скопирована и доработана, ошибки устранены.

БЛОК ПИТАНИЯ С РЕГУЛИРОВКОЙ ТОКА И НАПРЯЖЕНИЯ - плата печатная

   Вот фото моего варианта БП, вид готовой платы, и можно посмотреть как примерно применить корпус от старого компьютерного ATX. Регулировка сделана 0-20 В 1,5 А. Конденсатор С4 под такой ток поставлен на 100 мкФ 35 В.

Самодельный БЛОК ПИТАНИЯ С РЕГУЛИРОВКОЙ ТОКА И НАПРЯЖЕНИЯ

   При коротком замыкании максимум ограниченного тока выдается и загорается светодиод, вывел резистор ограничителя на переднюю панель.

Индикатор для блока питания

   Провёл у себя ревизию, нашёл пару простеньких стрелочных головок М68501 для этого БП. Просидел пол дня над созданием экрана для него, но таки нарисовал его и точно настроил под требуемые выходные напряжения.

Индикатор для блока питания стрелочный

   Сопротивление используемой головки индикатора и применённый резистор указаны в прилагаемом файле на индикаторе. Выкладываю переднюю панель блока, если кому понадобится для переделки корпус от блока питания АТХ, проще будет переставить надписи и что-то добавить, чем создавать с нуля. Если потребуются другие напряжения, шкалу можно просто подкалибровать, это уже проще будет. Вот готовый вид регулируемого источника питания:

Делаем простой БП С РЕГУЛИРОВКОЙ ТОКА И НАПРЯЖЕНИЯ

   Плёнка — самоклейка типа «бамбук». Индикатор имеет подсветку зелёного цвета. Красный светодиод Attention указывает на включившуюся защиту от перегрузки.

БЛОК ПИТАНИЯ С РЕГУЛИРОВКОЙ ТОКА И НАПРЯЖЕНИЯ

Дополнения от BFG5000

   Максимальный ток ограничения можно сделать более 10 А. На кулер — кренка 12 вольт плюс температурный регулятор оборотов — с 40 градусов начинает увеличивать обороты. Ошибка схемы особо не влияет на работу, но судя по замерам при КЗ — появляется прирост проходящей мощности.

БП С РЕГУЛИРОВКОЙ ТОКА И НАПРЯЖЕНИЯ своими руками

   Силовой транзистор установил 2n3055, все остальное тоже зарубежные аналоги, кроме BC548 — поставил КТ3102. Получился действительно неубиваемый БП. Для новичков-радиолюбителей самое-то.

БП С РЕГУЛИРОВКОЙ ТОКА И НАПРЯЖЕНИЯ

   Выходной конденсатор поставлен на 100 мкФ, напряжение не скачет, регулировка плавная и без видимых задержек. Ставил из расчёта как указано автором: 100 мкф ёмкости на 1 А тока. Авторы: Igoran и BFG5000.

   Форум по БП

   Обсудить статью БЛОК ПИТАНИЯ С РЕГУЛИРОВКОЙ ТОКА И НАПРЯЖЕНИЯ


Отправить ответ

avatar
  Подписаться  
Уведомление о