Вольтметр электронный своими руками: Простой цифровой вольтметр от 0 до 30 вольт на 3 сегмента – Стрелочный вольтметр на любое напряжение своими руками

Стрелочный вольтметр на любое напряжение своими руками


Приветствую, Самоделкины!
Аналоговые измерительные приборы постепенно вытесняются цифровыми, но несмотря на это стрелочные головки все еще довольно широко распространены, причем используют их не только мастера самодельщики в своих самодельных конструкциях. Конечно такие приборы не славятся сверх высокой точностью, но тем не менее, в некоторых измерениях аналоговый прибор просто незаменим.


В данной статье мы подробно рассмотрим технологию изготовления стрелочного вольтметра для самых различных задач, буквально на любое напряжение. Такой вольтметр можно будет использовать в качестве измерителя напряжение в зарядных устройствах, регулируемых источниках питания и так далее. Автором данного проекта является «AKA KASYAN» (YouTube канал «AKA KASYAN).
Как измерять напряжение, думаю, все в курсе. Для начала нам естественно понадобится электромагнитная измерительная головка.

Такую головку можно изготовить своими руками, но процесс этот не такой уж и простой, поэтому более простым вариантом будет поиск уже готовой. Для данной самоделки подойдет буквально любой стрелочный индикатор любых размеров.


Так же желательно, чтобы индикатор имел линейную измерительную шкалу. В данном примере автор использовал головку высоковольтного вольтметра переменного напряжения, который благополучно был извлечен из стабилизатора.

В данном случае автор поставил задачу изготовить из высоковольтного вольтметра переменного напряжения низковольтный вольтметр постоянного напряжения со шкалой в 15-20 вольт. Как вы поняли данный образец рассчитан для работы в цепях переменного напряжения, а шкала 300В.

Первым делом необходимо вскрыть и разобрать электромагнитную измерительную головку.



Внутри мы можем увидеть выпрямительный диод и токоограничивающий резистор.

Напряжение с клемм вольтметра подается на обмотку измерительной головки именно через эту цепочку из диода и резистора. От них немного позднее мы избавимся, а сейчас аккуратно вынимаем шкалу, она крепится при помощи двухстороннего скотча.

После этого шкалу необходимо отсканировать.

Далее получившийся рисунок необходимо отредактировать. Для этой цели подойдет любой редактор, даже всем известный «Paint» без особого труда справится с этой задачей. Удаляем все дефекты, дорисовываем неполные линии, символы и надписи, ну и естественно меняем циферки на нужные.


В данном случае шкалу было решено сделать на 16В.

Затем берем линеечку и измеряем размеры родной шкалы.


После этого открываем Word, вставляем туда наш рисунок, указываем полученные размеры, ну и в конечно же распечатываем все это дело, лучше сразу несколько штук, мало ли что.

Теперь бумажку необходимо обрезать до нужных размеров.

После чего приклеиваем ее на место любым подручным клеем.

Так, с этим вроде разобрались, теперь аккуратно откусываем цепочку из резистора и диода, о которой говорилось в начале статьи.


Теперь необходимо припаять торчащие выводы друг к другу вот так:

Таким образом, напряжение, которое мы подадим на клеммы вольтметра, непосредственно пойдет на обмотку измерительной головки. Данная электромагнитная измерительная головка довольно чувствительная, и стрелка полностью отклоняется если на клеммы подать напряжение всего лишь в 0,5В.

Так дело не пойдет. Это никуда не годится, так как по нашей задумке стрелка прибора должна отклоняться до предела только в том случае, если на клеммы поддается напряжение 16В.
Для того, чтобы это исправить нам понадобится переменный, а лучше подстроечный многооборотный резистор с сопротивлением 20-50кОм.


После чего необходимо собрать вот такую простейшую схему, которая сейчас перед вами:

Для калибровки индикатора очень желательно наличие лабораторного блока питания, но за неимением такового вполне можно ограничиться любым адаптером питания вольт на 6. Далее параллельно источнику питания необходимо подключить мультиметр, он у нас будет в качестве эталона.

Теперь на вход подаем напряжение и медленно вращаем подстроечный резистор до тех пор, пока стрелка не покажет то напряжение, которое мы видим на мультиметре.


То есть, достаточно всего лишь откалибровать головку на конкретной отметке, а за счет того, что шкала линейная, другие значения напряжения наш измеритель будет также адекватно показывать.

После того, как калибровка завершена, подстроечный резистор необходимо выпаять.


Далее необходимо замерить полученное сопротивление, и на место выпаянного подстроечного резистора устанавливаем постоянный резистор с таким же сопротивлением.

Если под рукой нет нужного резистора, то можно соединить несколько резисторов последовательно для получения необходимого значения сопротивления.

Для данного проекта желательно использовать резисторы с погрешностью в 1 и меньше процент.

Подстроечник конечно можно оставить, но перед этим необходимо будет заклеить регулирующий винт, чтобы предотвратить его смещение.

Очень часто для постройки и измерительных головок, в самом начале через ограничительное сопротивление на головку падают эталонное напряжение и на пустой шкале делают метки, которые учитываются во время создания шкалы в редакторе. Такой подход более предпочтителен, так как это позволяет построить измерительные головки довольно высокой точности.

А на этом все. Благодарю за внимание. До новых встреч!

Видеоролик автора:


Источник Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Вольтметр своими руками: изготовление и проведение измерений

Ситуации, когда под рукой должен находиться вольтметр, встречаются достаточно часто. Для этого нет необходимости использовать заводской сложный прибор. Изготовить простенький вольтметр своими руками – не проблема, потому что состоит он из двух элементов: стрелочный измерительный блок и резистор. Правда, необходимо отметить, что пригодность вольтметра определяется его входным сопротивлением, которое состоит из сопротивлений его элементов.

Вольтметр

Но необходимо учитывать тот факт, что резисторы есть разные с разными номиналами, а это говорит о том, что от установленного резистора будет зависеть входное сопротивление. То есть, подобрав правильно резистор, можно сделать вольтметр под замеры определенных уровней напряжений сетей. Сам же измерительный прибор чаще оценивается по показателю – относительное входное сопротивления, приходящееся на один вольт напряжения, его единица измерения – кОм/В.

То есть, получается так, что входное сопротивления на разных измеряемых участках разное, а относительная величина – показатель постоянный. К тому же, чем меньше отклоняется стрелка измерительного блока, тем больше относительная величина, а, значит, точнее будут измерения.

Прибор для измерения нескольких пределов

Кто не раз сталкивался с транзисторными конструкциями и схемами знает, что очень часто вольтметром приходится замерять цепи с напряжением от десятков долей одного вольта до сотен вольт. Простой приборчик, изготовленный своими руками, с одним резистором это не осилит, поэтому в схему придется подключить несколько элементов с разным сопротивлением. Чтобы вы поняли, о чем идет речь, предлагаем ознакомиться со схемой, расположенной снизу:

Четыри резисторами

На ней показано, что в схеме установлено четыре резистора, каждый из которых отвечает за свой диапазон измерений:

  1. От 0 вольт до единицы.
  2. От 0 вольт до 10В.
  3. От 0 В до 100 вольт.
  4. От 0 до 1000 В.

Номинал каждого резистора поддается подсчету, который проводится на основе закона Ома. Здесь используется следующая формула:

R=(Uп/Iи)-Rп, где

  • Rп – это сопротивление измерительного блока, возьмем, к примеру. 500 Ом;
  • Uп – это максимальное напряжение измеряемого предела;
  • Iи – это сила тока, при которой стрелка отклоняется до конца шкалы, в нашем случае – 0,0005 ампер.


Для несложного вольтметра из китайского амперметра можно выбрать следующие резисторы:

  • для первого предела – 1,5 кОм;
  • для второго – 19,5 кОм;
  • для третьего – 199,5;
  • для четвертого – 1999,5.

А вот относительная величина сопротивления этого прибора будет равна 2 кОм/В. Конечно, расчетные номиналы не совпадают со стандартными, поэтому резисторы придется подбирать близкими по значению. Далее проводится финишная подгонка, при которой производится градуировка самого прибора.

Как переделать вольтметр постоянного напряжения в переменное

Показанная на рисунке №1 схема – это вольтметр постоянного тока. Чтобы его сделать переменным или, как говорят специалисты, пульсирующим, необходимо в конструкцию установить выпрямитель, с помощью которого постоянное напряжение преобразуется в переменное. На рисунке №2 вольтметр переменного тока показан схематически.

Данная схема работает так:

  • когда на левом зажиме находится положительная полуволна, то открывается диод D1, D2 в этом случае закрыт;
  • напряжение проходит через амперметр к правому зажиму;
  • когда положительная полуволна находится на правом конце, то D1 закрывается, и напряжение через амперметр не проходит.

В схему обязательно добавляется резистор Rд, сопротивление которого рассчитывается точно так же, как и остальные элементы. Правда, его расчетное значение делится на коэффициент, равный 2,5-3. Это в том случае, если в вольтметр устанавливается однополупериодный выпрямитель. Если используется двухполупериодный выпрямитель, то значение сопротивления делится на коэффициент: 1,25-1,5. Кстати, схема последнего изображена на рисунке №3.

Как правильно подключить вольтметр

Тот, кто не знает, но хочет проверить напряжение на каком-то участке электрической сети, должен задаться вопросом – как подключить вольтметр? Это на самом деле серьезный вопрос, в ответе которого лежит простое требование – подключение вольтметра необходимо проводить только параллельно нагрузке. Если будет произведено последовательное подключение, то сам прибор просто выйдет из строя, и вас может ударить током.

Вольтметр своими руками

Все дело в том, что при таком соединении уменьшается сила тока, действующая на сам измерительный прибор. При этом сопротивлении его не меняется, то есть, остается большим. Кстати, никогда не путайте вольтметр с амперметром. Последний подключается к цепи последовательно, чтобы снизить показатель сопротивления до минимума.

И последний вопрос темы – как пользоваться вольтметром, изготовленным самостоятельно. Итак, в вашем приборе два щупа. Один подключается к нулевому контуру, второй к фазе. Так же можно проверить напряжение через розетку, предварительно определив, к какому гнезду запитан ноль, а к какому фаза. Или соединяете параллельно прибор к измеряемому участку. Стрелка измерительного блока покажет величину напряжения в сети. Вот так пользуются этим самодельным измерительным прибором.

Как самому сделать цифровой вольтметр своими руками. Цифровой вольтметр: виды, схема, описание

Придумать все самому не получается – пока знаний программирования микропроцессоров не достаточно (только учусь), а отставать не хочется. Серфинг Интернета дал несколько разных вариантов как по сложности схемотехники и выполняемых функций, так и самих процессоров. Анализ ситуации на местных радиорынках и трезвый подход (покупать то что по карману; делать то, что реально сможешь, а процесс изготовления да время настройки не затянется на неограниченное время) остановил мой выбор на схеме вольтметра описанного на www.CoolCircuit.com.

Итак, нижеприведенная принципиальная схема уже исправлена . Прошивка осталась родная (main.HEX — приобщаю).

Те, кто процессоры «держит в руках часто» дальше могут не читать, а остальным, особенно кто в первый раз, расскажу, как все сделать хоть и не оптимально (да простят мне профессионалы стиль изложения), но в итоге правильно.
Итак, для справки: семейство процессоров РІC на 14 ножек имеют разную распиновку поэтому нужно проверить подходит ли имеющийся у Вас программатор с панельками под этот чип. Обратите внимание именно на 8-пиновую панельку, как правило, именно она и подходит, а крайние справа выводы просто висят. Я пользовался обычным программатором «PonyProg» .

Следует учесть при пограммировании РІС важно не затереть калибровочную константу внутреннего генератора чипа ибо внешний кварц здесь не используется. Она записана в последней ячейке (адресе) памяти процессора. Если использовать IcProg, выбрав тип МК, то в окне – «Адрес программного кода» в последней строке обозначенной адресом — 03F8 крайние справа четыре символа и есть указанная индивидуальная константа. (Если микросхема новая и ни разу не программированная то после кучи символов 3FFF – последним будет что то типа 3454 – это самое то).

Чтобы расчет показаний вольтметра соответствовал истине, все сделать правильно и понять процесс происходящего предлагаю хоть не оптимальный но надеюсь понятный алгоритм:

Перед программированием МК, необходимо в IcProg сначала дать команду «Читать все» и посмотреть на вышеуказанную ячейку памяти – там будет значится индивидуальная константа этого чипа. Ее надо переписать на бумажку (в памяти не держать!- забудешь).
— загрузить программный файл прошивки МК – с расширением *.hex (в даном случае -«main.hex») и проверить какая константа записана в той же ячейке в данном программном продукте. Если она отличается – поставить курсор и ввести туда данные, ранее записанные на бумажке.
— нажимаем команду программировать — после появившегося вопроса типа: «использовать ли данные осцилятора из файла» – соглашаетесь. Ибо Вы уже проверили, что там то что надо.

Еще раз прошу прощения у тех, кто программирует много и так не делает, но я пытаюсь донести до начинающих информацию о достаточно важном программном элементе данного микропроцессора и не потерять его из-за разных иногда совсем непонятных, а то и необъяснимых потом ситуаций. Особенно если дрожащими от волнения руками воткнул чип в только что сооруженный и впервые соединенный с компом программатор и, волнуясь, нажимаешь кнопку программировать, а оное чудо техники начинает еще и непонятные вопросы задавать – вот тут то все неприятности и начинаются.

Итак, если все этапы пройдены верно, – микросхема МК готова к использованию. Дальше дело техники.
От себя хочу добавить, что транзисторы здесь не критичные – подходят любые р-n-р структуры, в т.ч. советские, в пластмассовом корпусе. Я использовал выпаянные из импортной бытовой техники после проверки на соответствие структуры проводимости. В этом случае присущ еще один нюанс – расположение вывода базы транзистора может быть по середине корпуса или с краю. Для работы схемы это безразлично, нужно только соответственно формировать выводы при пайке. Постоянные резисторы для делителя напряжения – именно указанного номинала. Если найти импортный подстроечный резистор на 50 кОм не удастся, то советского производства желательно взять чуточку больше — 68 кОм, а 47 кОм брать не рекомендую ибо в случае одновременного совпадения пониженных номиналов — потеряется расчетное соотношение сопротивлений делителя напряжения, которое может быть трудно исправить подстоечником.

Как я уже писал у моего блока питания два плеча – поэтому сделал сразу два вольтметра на одной плате, а индикаторы вывел на отдельную плату для экономии места на лицевой панели. Развел под обычные элементы. Файлы с разводкой плат, исходник и hex прилагаются в архиве. У Вас — SMD, то переделать ее не трудно, если надо обращайтесь.

Для тех, кто захочет повторить этот вольтметр и имеет, как у меня, двухполярный блок питания с общей средней точкой — напоминаю о необходимости питания обоих вольтметров от двух отдельных (гальванически разделенных) источников. Скажем — отдельных обмоток сылового трансформатора или, как вариант – импульсный преобразователь, но обязательно с двумя обмотками по 7 Вольт (нестабилизированных). Для тех, кто будет делать «импульсник»: ток потребления вольтметра от 70 до 100 мА в зависимости от размера и цвета индикатора. Иначе никак ибо на порт МК нельзя подавать отрицательное напряжение.
Если кому понадобится и схема преобразователя, спрашивайте на форуме, я сейчас над этим вопросом работаю.

Архив с нужными даными и печатками в SLayout-5rus:
▼ ⚖ 33,04 Kb ⋅ ⇣ 745

Эта конструкция описывает простой вольтметр, с индикатороми на двенадцати светодиодах. Данное измерительное устройство позволяет отображать измеряемое напряжение в диапазоне значений от 0 до 12 вольт с шагом в 1 вольт, причем погрешность в измерении очень низкая.

На трех операционных усилителях LM324 собраны компараторы напряжения. Их инверсные входы подсоединены к резисторному делителю напряжения, собранного на резисторах R1 и R2, через который на схему идет контролируемое напряжение.

На неинвертирующие входы операционных усилителей поступает опорное напряжение с делителя, выполненного на сопротивлениях R3 — R15. Если на входе вольтметра отсутствует напряжение, то на выходах ОУ будет высокий уровень сигнала и на выходах логических элементов будет логический ноль, поэтому светодиоды не светятся.

При поступление на вход светодиодного индикатора измеряемого напряжения, на определенных выходах компараторов ОУ установится низкий логический уровень, соответственно на светодиоды поступит высокий логический уровень, в результате чего загорится соответствующий светодиод. Для предотвращения подачи уровня напряжения на входе устройства имеется защитный стабилитрон на 12 вольт.

Этот вариант рассмотренной выше схемы отлично подойдет любому автовладельцу и даст ему наглядную информацию о состоянии заряда аккумуляторной батареи. В данном случае задействованы четыре встроенных компаратора микросборки LM324. Инвертирующими входами формируются опорные напряжения 5,6V, 5,2V, 4,8V, 4,4V соответственно. Напряжение аккумулятора напрямую поступает на инвертирующий вход через делитель на сопротивлениях R1 и R7.


Светодиоды выступают в роли мигающих индикаторов. Для настройки, вольтметр, подсоединяют к АКБ, затем регулируют переменный резистор R6 так, чтобы нужные напряжения присутствовали на инвертирующих выводах. Зафиксируйте индикаторные светодиоды на передней панели авто и нанесите рядом с ними напряжение аккумулятора, при котором загораются тот, или иной индикатор.

Итак, хочу сегодня рассмотреть очередной проект с применением микроконтроллеров, но еще и очень полезный в ежедневных трудовых буднях радиолюбителя. Это цифровое устройство на современном микроконтроллере. Конструкция его была взята из журнала радио за 2010 год и может быть с легкостью перестр

Изготовление самодельного цифрового вольтметра в домашних условиях

При работе с различными электронными изделиями возникает потребность измерять режимы или распределение переменных напряжений на отдельных элементах схемы. Обычные мультиметры, включённые в режиме AC, могут фиксировать лишь большие значения этого параметра с высокой степенью погрешности. При необходимости снятия небольших по величине показаний желательно иметь милливольтметр переменного тока, позволяющий производить измерения с точностью до милливольта.

Самодельный цифровой вольтметр

Для того чтобы изготовить цифровой вольтметр своими руками, нужен определённый опыт работы с электронными компонентами, а также умение хорошо управляться с электрическим паяльником. Лишь в этом случае можно быть уверенным в успехе сборочных операций, осуществляемых самостоятельно в домашних условиях.

Вольтметр на основе микропроцессора

Выбор деталей

Перед тем, как сделать вольтметр, специалисты рекомендуют тщательно проработать все предлагаемые в различных источниках варианты. Основное требование при таком отборе – предельная простота схемы и возможность измерять переменные напряжения с точностью до 0,1 Вольта.

Анализ множества схемных решений показал, что для самостоятельного изготовления цифрового вольтметра целесообразнее всего воспользоваться программируемым микропроцессором типа РІС16F676. Тем, кто плохо знаком с техникой перепрограммирования этих чипов, желательно приобретать микросхему с уже готовой прошивкой под самодельный вольтметр.

Особое внимание при закупке деталей следует уделить выбору подходящего индикаторного элемента на светодиодных сегментах (вариант типового стрелочного амперметра в этом случае полностью исключён). При этом предпочтение следует отдать прибору с общим катодом, поскольку число компонентов схемы в этом случае заметно сокращается..

Дополнительная информация. В качестве дискретных комплектующих изделий можно использовать обычные покупные радиоэлементы (резисторы, диоды и конденсаторы).

После приобретения всех необходимых деталей следует перейти к разводке схемы вольтметра (изготовлению его печатной платы).

Подготовка платы

Перед изготовлением печатной платы нужно внимательно изучить схему электронного измерителя, учтя все имеющиеся на ней компоненты и разместив их на удобном для распайки месте.

Схема электронного прибора

Важно! При наличии свободных средств можно заказать изготовление такой платы в специализированной мастерской. Качество её исполнения в этом случае будет, несомненно, выше.

После того, как плата готова, нужно «набить» её, то есть разместить на своих местах все электронные компоненты (включая микропроцессор), а затем запаять их низкотемпературным припоем. Тугоплавкие составы в этой ситуации не подойдут, поскольку для их разогрева потребуются высокие температуры. Так как в собираемом устройстве все элементы миниатюрные, то их перегрев крайне нежелателен.

Блок питания (БП)

Для того чтобы будущий вольтметр нормально функционировал, ему потребуется отдельный или встроенный блок питания постоянного тока. Этот модуль собирается по классической схеме и рассчитан на выходное напряжение 5 Вольт. Что касается токовой составляющей этого устройства, определяющей его расчетную мощность, то для питания вольтметра вполне достаточно половины ампера.

Исходя из этих данных, подготавливаем сами (или отдаём для изготовления в специализированную мастерскую) печатную плату под БП.

Обратите внимание! Рациональнее будет сразу подготовить обе платы (для самого вольтметра и для блока питания), не разнося эти процедуры по времени.

При самостоятельном изготовлении это позволит за один раз выполнять сразу несколько однотипных операций, а именно:

  • Вырезка из листов стеклотекстолита нужных по размеру заготовок и их зачистка;
  • Изготовление фотошаблона для каждой из них с его последующим нанесением;
  • Травление этих плат в растворе хлористого железа;
  • Набивка их радиодеталями;
  • Пайка всех размещённых компонентов.

В случае, когда платы отправляются для изготовления на фирменном оборудовании, их одновременная подготовка также позволит выгадать как по цене, так и по времени.

Сборка и настройка

При сборке вольтметра важно следить за правильностью установки самого микропроцессора (он должен быть уже запрограммирован). Для этого необходимо найти на корпусе маркировку его первой ножки и в соответствии с ней зафиксировать корпус изделия в посадочных отверстиях.

Важно! Лишь после того, как есть полная уверенность в правильности установки самой ответственной детали, можно переходить к её запаиванию («посадке на припой»).

Иногда для установки микросхемы рекомендуется впаивать в плату специальную панельку под неё, существенно упрощающую все рабочие и настроечные процедуры. Однако такой вариант выгоден лишь в том случае, если используемая панелька имеет качественное исполнение и обеспечивает надёжный контакт с ножками микросхемы.

После запайки микропроцессора можно набить и сразу же посадить на припой все остальные элементы электронной схемы. В процессе пайки следует руководствоваться следующими правилами:

  • Обязательно использовать активный флюс, способствующий хорошему растеканию жидкого припоя по всей посадочной площадке;
  • Стараться не задерживать жало на одном месте слишком долго, что исключает перегрев монтируемой детали;
  • По завершении пайки следует обязательно промыть печатную плату спиртом или любым другим растворителем.

Готовая плата

В том случае, если при сборке платы не допущено никаких ошибок, схема должна заработать сразу после подключения к ней питания от внешнего источника стабилизированного напряжения 5 Вольт.

В заключение отметим, что собственный блок питания может быть подключен к готовому вольтметру по завершении его настройки и проверки, производимой по стандартной методике.

Видео

Оцените статью:

РадиоКот :: Простой цифровой вольтметр ch-c3200.

РадиоКот >Схемы >Цифровые устройства >Измерительная техника >

Простой цифровой вольтметр ch-c3200.

В этой статье рассмотрен пример создания простого вольтметра постоянного тока на печатной платы ch-c0030pcb. Дан краткий принцип построения цифровых вольтметров, описание схемы, прошивки контроллеров, а также программа на ассемблере с комментариями. Большой популярностью пользуются цифровые вольтметры среди автолюбителей для контроля напряжения бортовой сети автомобиля. Поэтому рассматриваемая конструкция, ориентирована на возможность питания от бортовой сети автомобиля (12-24 вольта) и для индикации и контроля питающего напряжения.

Для реализации этого проекта нам потребуется PIC-контроллер с аналого-цифровым преобразователем (АЦП). По монтажному месту нам подойдут из серии PIC16 — PIC16F819 или PIC16F88.

 

Схема вольтметра. 

 

Позиционное обозначение элементов сохранено согласно монтажной схемы платы. Питание подается на контакты 1,2 соединителя, контакты 3,4 используются для подключения индикатора или исполнительного устройства. Подается контролируемое напряжение на контакт 9. Контролируемое напряжение не должно превышать 100 вольт.Измерение напряжения. Для измерения напряжения будем использовать вход AN0. При помощи перемычек R20 и R18 сконфигурируем входную цепь. В качестве делителя входного напряжения будем использовать резисторы R1 и R2. Соотношение 20/1 позволит нам измерять постоянные напряжения до 100 вольт. В качестве опорного напряжения будем использовать напряжение стабилизатора питания контроллера.


 

В выбранных нами контроллерах встроен десяти разрядный АЦП, это значит, что выбранный нами диапазон опорного напряжения 5.0 вольт он «разделит» на 1024 значения. Т.е. если на вход контроллера AN0 подавать напряжение от 0 до 5 вольт, то с регистров АЦП ADRESH и ADRESL сможем сосчитать значение от 0 до 1023.

Значит, в нашем случае весовое значение одного разряда АЦП составит 5/1024 =0,0048828125 вольта.

Для вычисления напряжения необходимо полученное значение АЦП умножать на0,0048828125.

Например, при измерении мы получили значение 359. Для вычисления напряжения нам необходимо 359*0,0048828125 = 1,7529296875. Или округленно 1,8 вольта.

Но как нам измерять напряжения выше 5 вольт? Для этого и используется входной делитель на резисторах R1 и R2. Выберем R2=10 кОм, почему 10, потому если входные цепи АЦП требуют, что бы источник имел сопротивление не ниже 10 кОм. А в целях уменьшения входного тока, возьмём максимальное значение. R1 выберем равное = 200 кОм  для обеспечения необходимого диапазона входного напряжения.

Коэффициент деления 200/10=20. Это значит, что напряжение, поступающее на вход делителя, будет уменьшено на его выходе в 20 раз. При максимальном входном напряжении на входе контроллера 5 вольт мы сможем измерять напряжения 5*20=100 вольт,(или для нашего случая 99,9 вольта). Такой диапазон достаточен для многих устройств, включая и автомобильную технику.

И так если мы выбрали для индикации минимального значения 0,1 вольт, то диапазон индицируемых значений составит от 0,1 до 99,9 вольт.

Для измерения переменного напряжения необходимо на вход добавить выпрямительный диод и изменить входной делитель, но в этой публикации создание вольтметра переменного тока рассматриваться не будет.

Программа.

Для работы контролера, необходимо программа, которая будет выполнять все наши требования по работе устройства. Программа написана на ассемблере с применение среды MPLAB IDE v8.83.

Наша программа кроме измерения напряжения и вывода его значения на индикатор будет выполнять и необходимые функции по контролю напряжения. Так как параметры по контролю напряжения необходимо задавать во время эксплуатации устройства, то добавим к нашему устройству кнопки управления. Кнопки управления подключаются к порту B микроконтроллера и используются для ввода параметров работы и калибровочных констант. Для сохранения параметров в отключенном состоянии используется EEPROM контроллера. Запоминание происходить при выходе из режима настройки.

 

Выбор PIC-контроллера.

Прошивка и текст на ассемблере выполнены для контроллера PIC16F88, но с незначительными изменениями в программе можно приметить и PIC16F819. Для этого в тексте программы есть пометки позволяющие переключиться с одного процессора на другой.

Сборочный чертеж верхняя сторона платы.

 

Сборочный чертеж нижняя сторона.

 

Программирование контроллера.

Программирование PIC контроллера можно выполнить непосредственно в плате, для этого можно использовать любой программатор позволяющий выполнять внутрисхемное программирование.

Для этого применяется соединитель CON1 (отверстие в плате).

 

Демонстрация доступа к функциям настройки параметров работы вольтметра.

Демонстрация калибровки вольтметра.

От того как правильно будет выполнена калибровка зависит точность паказаний нашего вольтметра. Для этого необходимо выполнить три правила:

1. Калибруют по максимальному значению измеряемого диапазона.
Что это значит? Если вы планируете измерять диапазон напряжений например, от 0 до 30 вольт, то необходимо выставить 30 вольт и по этому уровню калибровать вольтметр.
2. Калибровать надо по прибору более высокого класса.
Если вы желаете получить точность +/- 0,1 вольта выставить с точностью до сотых — 30,00. Реально это сделать из того что есть под руками сложно, поэтому надо попытаться установить максимально точно.
3. Подгонять показания надо как можно точнее выбирать точку смены индикации.

Как это делать посмотрите видеоролик. На ролике мы калибруем вольтметр по уровню напряжения 20 вольт.

Файлы:
Описание вольтметра.
Программа (ассемблер, MPLAB — V8.76) PIC16F88 (PIC16F819).
Схема вольтметра.
Прошивка для контроллера PIC16F88.
Сборочный чертеж платы.

Все вопросы в Форум.


Как вам эта статья?

Заработало ли это устройство у вас?

Миллиомметр своими руками


Приветствую, Самоделкины!
У большинства радиолюбителей при работе с источниками питания, очень часто возникает необходимость измерить сопротивление токовых шунтов, как самодельных, так и промышленных. А как известно обычным мультиметром даже хорошим и достаточно дорогим невозможно измерить сопротивление менее 0,1 Ома.

Произвести замеры сопротивления любого резистора возможно при помощи лабораторного источника питания, который имеет функцию ограничения тока, мультиметра и, думаю, всем хорошо знакомого дедушки Ома, вернее его закона.

Но согласитесь, не плохо бы было иметь специализированное устройство, которое без дополнительных телодвижений способно измерить сопротивление нескольких резисторов и токовых шунтов. Поэтому AKA KASYAN, автор одноименного YouTube канала, решил изготовить такое устройство.

Само устройство получилось довольно компактным, обладает довольно высокой точностью и самое главное не зависит от сетей, так как имеет свой источник питания в лице батареи 6F22 (Крона) с напряжением 9В.


Такой батарейки хватит на довольно длительное время. Основа работы устройства — закон Ома.

В качестве подопытного возьмем резистор с не известным сопротивлением, которое нужно измерить.

Данное устройство имеет систему стабилизации тока на 100 мА и измерительный вольтметр, который измеряет падение напряжения на подопытном резисторе. А зная падение напряжения и ток протекающий в цепи, не составит особого труда понять, какое сопротивление имеет наш испытуемый резистор.

Конкретно в данном примере нет необходимости производить какие-либо дополнительные расчеты, так как выбран ток 100 мА (или 0,1 А), следовательно, 100 мВ (или 0,1В) на вольтметре будет означать, что сопротивление испытуемого резистора 1 Ом. При показаниях 10 мВ – значение сопротивления 0,1Ом, 1 мВ — сопротивление соответственно 0,01 Ом. Как видите все просто, привыкнуть можно достаточно быстро.

Для точной работы нашего самодельного устройства нам необходим вольтметр, который способен корректно измерять очень низкие напряжения. Изначально автор планировал сделать устройство аналоговым, но измерительные головки, которые были испытаны, увы, не могли отображать такие низкие напряжения, и требовалась установка усилитель, чего делать не хотелось, так как в наличии имелся прецизионный цифровой вольтметр, его автор приобрел на широко известной китайской торговой площадке Алиэкспресс.

Данный экземпляр, по словам продавца, имеет довольно малую погрешность, которая составляет всего 0,3 процента. Но не будем доверять продавцу и произведем дополнительную калибровку именно в диапазоне до 100 мВ. Погрешность эталонного мультиметра 1%.


Для калибровки вольтметра на его плате предусмотрен крохотный подстроечный резистор.

Сам вольтметр имеет 3 провода. Черный – это масса, желтый — измерительный плюс, красный провод — плюс питания вольтметра.

Такой вольтметр можно запитать от любого источника постоянного тока с напряжением от 3,5В до 28В.

Данный вольтметр пятиразрядный и теоретически способен измерять напряжение начиная от 100 мкВ. Но последние цифры на дисплее не стоит воспринимать всерьез, ну разве что для округления значений.
Минимальное напряжение, которое вольтметр может отображать более-менее корректно начинается от 1 мВ. Из этого следует, что минимальное сопротивление, которое может измерять наш прибор составляет 0,01 Ом, или 10 мОм.
Стабилизатор тока состоит построен всего на двух компонентах, а именно из токозадающего резистора и микросхемы lm317, которая в свою очередь подключена по схеме стабилизатора тока.


Для тока 100 мА необходим резистор с сопротивлением около 13 Ом. В данном примере автором был использован подстроечный многооборотный резистор СП5-1 родом из далекого СССР.


Данный резистор на 60 оборотов, благодаря чему можно с довольно большой точностью выставить необходимое сопротивление.
Вся схема выполнена на довольно компактной печатной плате. Хотя тут запросто можно обойтись и вовсе без платы из-за минимального количества компонентов.

Прибор собран, теперь необходимо произвести калибровку схемы. Для этого нам понадобится эталонный измеритель тока. В данном случае воспользуемся все тем же мультиметром в режиме амперметра, погрешность прибора в этом режиме около 1-го процента.


Подключаем все по схеме.

Питание — батарея 6F22, вращаем ползунок подстроечного резистора до тех пор, пока на экране прибора не увидим значения тока равное 100 мА.

Этим вся наладка завершена, остается только зафиксировать винт подстроечного резистора.
Корпус для данной самоделки автор решил напечатать на 3d принтере. Как видим получилось не очень аккуратно, ну ладно.


Теперь можно все устанавливать в корпус на свои места.

Ну а теперь переходим непосредственно к испытаниям нашего устройства в деле.

Согласитесь, неплохо правда. В итоге у нас получился компактный и к тому же портативный миллиомметр.

Точность прибора. Погрешность показаний вольтметра составляет 1%, добавляем к этому еще 1% погрешности системы ограничения тока, ну и добавим еще около процента на всякие потери в проводах и соединениях. В идеале получаем погрешность, не превышающую 3%. Но при измерении сопротивлений менее 0,01 Ома и выше 0,5 Ом погрешность возрастает поскольку калибровку устройства мы производили именно на этот диапазон, но и это, согласитесь, неплохо, с учетом того, что стоимость сборки не превышает 5-6 долларов.
Ну а на этом, пожалуй, пора заканчивать. Благодарю за внимание. До новых встреч!

Видеоролик автора:


Источник Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Амперметр своими руками


Привет всем любителям самоделок. В данной статье я расскажу, как сделать амперметр своими руками, в сборке которой поможет кит-набор, ссылка на него будет в конце статьи. Данный амперметр пригодится для различных самоделок, где нужно контролировать ампераж. Корпус радиоконструктора выполнен специально с защелками для установки на щиток или панель, что является несомненным плюсом.

Перед прочтением статьи предлагаю посмотреть видеоролик с подробным процессом сборки и проверкой в работе кит-набора.

Для того, чтобы сделать амперметр своими руками, понадобится:
* Кит-набор
* Паяльник, флюс, припой
* Мультиметр
* Приспособление для пайки «третья рука»
* Крестовая отвертка
* Бокорезы

Шаг первый.
Весь монтаж будет производиться на печатной плате, на которой нанесена маркировка всех компонентов, так что в данном случае инструкция не нужна, само качество изготовления платы на высоком уровне, также она имеет металлизированные отверстия.


Помимо самой платы здесь имеется не так много радиодеталей, таких как, конденсаторы, микросхема и панелька под нее, корпус с красным светофильтром и другие компоненты.

Разобравшись с комплектом кит-набора, переходим непосредственно к сборке.

Шаг второй.
Первым делом на плату устанавливаем резисторы. Для установки резисторов необходимо измерить их номиналы, сделать это можно при помощи мультиметра, цветовой маркировки с справочной таблицей или онлайн-калькулятора. Определив сопротивление каждого резистора, устанавливаем их на свои места, согласно маркировке на плате, с обратной стороны загинаем выводы, чтобы при пайке детали не выпали.


После установки резисторов переходим к конденсаторам, устанавливаем полярные и неполярные конденсаторы, полярные ставим с соблюдением полярности, плюс это длинная ножка, минус-короткая, также минус на плате обозначен заштрихованным полукругом.

Керамические неполярные конденсаторы вставляем согласно цифровой маркировке на их корпусе и на самой плате. Далее вставляем диоды, на плате один их них выделен жирной полоской, которая также нанесена черным на корпусе диода, остальные три все одинаковые и перепутать их не получится, а затем ставим индуктивность.


Шаг третий.
Теперь закрепляем плату в приспособлении для пайки «третья рука» и наносим флюс на контакты, после чего припаиваем их при помощи паяльника, добавляя припой по мере необходимости.


Далее при помощи бокорезов откусываем лишнюю часть выводов, чтобы в дальнейшем они не мешали. При удалении выводов бокорезами будьте аккуратны, так как дорожки на плате держатся не очень крепко и есть возможность их нечаянно оторвать. После этого устанавливаем оставшиеся элементы. Вставляем на плату панельку для установки микросхемы, ориентируясь по ключу, затем два транзистора, на плате изображена маркировка в виде их корпусов. Для калибрования прибора устанавливаем подстроечный резистор, и под подключение входа и выхода вставляем разъемы.

Припаиваем установленные радиодетали с обратной стороны платы паяльником аналогично предыдущему шагу.


Шаг четвертый.
После пайки вставляем семисегментные индикаторы на плату, ориентируясь по точке на их корпусе и на маркировке платы, но перед этим очищаем плату от остатков флюса, для этого отлично подойдет растворитель или бензин «калоша».

Закрепляем плату в «третьей руке» , наносим флюс и припаиваем выводы индикаторов, при этом стараемся не перегревать их.


Удалять выводы на данном этапе не нужно, так как они не мешают.

Вставляем микросхему, ориентируясь по ключу в виде полукруглой выемки на ее корпусе, а также на самой плате.

Отклеиваем защитные пленки с семисегментных индикаторов.


Затем устанавливаем собранную плату в корпус с светофильтром красного цвета, который служит антибликом.


Плату закрепляем в корпусе с помощью четырех винтиков их комплекта, вкручиваем их крестовой отверткой.

Вот и готов кит-набор, теперь его можно проверить в действии.

Шаг пятый.
Чтобы проверить данный радиоконструктор необходимо подсоединить провода к питанию, для этого будет достаточно аккумуляторной батареи типа 18650, а тестируемое устройство подсоединяем в разрыв к входу прибора.


Подключать можно различные устройства для проверки потребления тока, чтобы откалибровать измерения имеется подстроечный резистор. Данный кит-набор пригодится для тех, кто хочет сделать что-то электронное, где необходим вывод информации в реальном времени, например, потребление тока электродвигателя. Также данная сборка будет полезна начинающим радиолюбителям, которые хотят попробовать себя в радиоэлектронике.

На этом у меня все, всем спасибо за внимание и творческих успехов.


Купить Kit-набор на Aliexpress

Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Отправить ответ

avatar
  Подписаться  
Уведомление о